Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2014

01-01-2014 | Basic Science

Electroretinographic assessment of retinal function during acute exposure to normobaric hypoxia

Authors: Andreas Schatz, Maurice Breithaupt, Jens Hudemann, Andreas Niess, André Messias, Eberhart Zrenner, Karl Ulrich Bartz-Schmidt, Florian Gekeler, Gabriel Willmann

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2014

Login to get access

Abstract

Background

The current study aimed to investigate retinal function during exposure to normobaric hypoxia.

Methods

Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) using an extended ISCEV protocol was applied to explore intensity–response relationship in dark- and light- adapted conditions in 13 healthy volunteers (mean age 25 ± 3 years). Baseline examinations were performed under atmospheric air conditions at 341 meters above sea level (FIO2 of 21 %), and were compared to hypoxia (FIO2 of 13.2 %) by breathing a nitrogen-enriched gas mixture for 45 min. All subjects were monitored using infrared oximetry and blood gas analysis.

Results

The levels of PaCO2 changed from 38.4 ± 2.7 mmHg to 36.4 ± 3.0 mmHg, PaO2 from 95.5 ± 1.9 mmHg to 83.7 ± 4.6 mmHg, and SpO2 from 100 ± 0 % to 87 ± 4 %, from baseline to hypoxia respectively. A significant decrease (p < 0.05) was found for saturation amplitude of the dark-adapted b-wave intensity–response function (Vmax), dark-adapted a- and b-wave amplitudes of combined rod and cone responses (3 and 10 cd.s/m2), light-adapted b-wave amplitudes of single flash (3 and 10 cd.s/m2), and flicker responses (5–45 Hz) during hypoxia compared to baseline, without changes in implicit times. The a-wave slope of combined rod and cone responses (3 and 10 cd.s/m2) and the oscillatory potentials were significantly lower during hypoxia (p < 0.05). A isolated light-adapted ON response (250 ms flash) showed a reduction of amplitudes at hypoxia (p < 0.05), but no changes were observed for the OFF response.

Conclusions

The results show significant impairment of retinal function during simulated normobaric short-term hypoxia affecting specific retinal cells of rod and cone pathways.
Literature
2.
go back to reference Fulton AB, Akula JD, Mocko JA, Hansen RM, Benador IY, Beck SC, Fahl E, Seeliger MW, Moskowitz A, Harris ME (2009) Retinal degenerative and hypoxic ischemic disease. Doc Ophthalmol 118:55–61PubMedCentralPubMedCrossRef Fulton AB, Akula JD, Mocko JA, Hansen RM, Benador IY, Beck SC, Fahl E, Seeliger MW, Moskowitz A, Harris ME (2009) Retinal degenerative and hypoxic ischemic disease. Doc Ophthalmol 118:55–61PubMedCentralPubMedCrossRef
3.
go back to reference Ricci B, Calogero G (1988) Oxygen-induced retinopathy in newborn rats: effects of prolonged normobaric and hyperbaric oxygen supplementation. Pediatrics 82:193–198PubMed Ricci B, Calogero G (1988) Oxygen-induced retinopathy in newborn rats: effects of prolonged normobaric and hyperbaric oxygen supplementation. Pediatrics 82:193–198PubMed
4.
go back to reference Ashton N (1966) Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. The XX Francis I. Proctor Lecture. Am J Ophthalmol 62:412–435PubMed Ashton N (1966) Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. The XX Francis I. Proctor Lecture. Am J Ophthalmol 62:412–435PubMed
5.
go back to reference Caprara C, Grimm C (2012) From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 31:89–119PubMedCrossRef Caprara C, Grimm C (2012) From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 31:89–119PubMedCrossRef
6.
go back to reference Feigl B, Brown B, Lovie-Kitchin J, Swann P (2007) Functional loss in early age-related maculopathy: the ischaemia postreceptoral hypothesis. Eye (Lond) 21:689–696CrossRef Feigl B, Brown B, Lovie-Kitchin J, Swann P (2007) Functional loss in early age-related maculopathy: the ischaemia postreceptoral hypothesis. Eye (Lond) 21:689–696CrossRef
7.
go back to reference Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747PubMed Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747PubMed
8.
go back to reference Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E (1996) Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 37:290–299PubMed Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E (1996) Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 37:290–299PubMed
10.
go back to reference Yamamoto S, Kamiyama M, Nitta K, Yamada T, Hayasaka S (1996) Selective reduction of the S cone electroretinogram in diabetes. Br J Ophthalmol 80:973–975PubMedCrossRef Yamamoto S, Kamiyama M, Nitta K, Yamada T, Hayasaka S (1996) Selective reduction of the S cone electroretinogram in diabetes. Br J Ophthalmol 80:973–975PubMedCrossRef
11.
go back to reference Greenstein VC, Hood DC, Ritch R, Steinberger D, Carr RE (1989) S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Invest Ophthalmol Vis Sci 30:1732–1737PubMed Greenstein VC, Hood DC, Ritch R, Steinberger D, Carr RE (1989) S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Invest Ophthalmol Vis Sci 30:1732–1737PubMed
12.
go back to reference Breton ME, Quinn GE, Keene SS, Dahmen JC, Brucker AJ (1989) Electroretinogram parameters at presentation as predictors of rubeosis in central retinal vein occlusion patients. Ophthalmology 96:1343–1352PubMedCrossRef Breton ME, Quinn GE, Keene SS, Dahmen JC, Brucker AJ (1989) Electroretinogram parameters at presentation as predictors of rubeosis in central retinal vein occlusion patients. Ophthalmology 96:1343–1352PubMedCrossRef
13.
go back to reference Larsson J, Andreasson S (2001) Photopic 30 Hz flicker ERG as a predictor for rubeosis in central retinal vein occlusion. Br J Ophthalmol 85:683–685PubMedCrossRef Larsson J, Andreasson S (2001) Photopic 30 Hz flicker ERG as a predictor for rubeosis in central retinal vein occlusion. Br J Ophthalmol 85:683–685PubMedCrossRef
14.
go back to reference Moschos M, Brouzas D, Moschou M, Theodossiadis G (1999) The a- and b-wave latencies as a prognostic indicator of neovascularisation in central retinal vein occlusion. Doc Ophthalmol 99:123–133PubMedCrossRef Moschos M, Brouzas D, Moschou M, Theodossiadis G (1999) The a- and b-wave latencies as a prognostic indicator of neovascularisation in central retinal vein occlusion. Doc Ophthalmol 99:123–133PubMedCrossRef
15.
go back to reference Chen H, Wu D, Huang S, Yan H (2006) The photopic negative response of the flash electroretinogram in retinal vein occlusion. Doc Ophthalmol 113:53–59PubMedCrossRef Chen H, Wu D, Huang S, Yan H (2006) The photopic negative response of the flash electroretinogram in retinal vein occlusion. Doc Ophthalmol 113:53–59PubMedCrossRef
16.
go back to reference Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77PubMedCrossRef Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77PubMedCrossRef
17.
go back to reference Gekeler F, Messias A, Ottinger M, Bartz-Schmidt KU, Zrenner E (2006) Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects. Invest Ophthalmol Vis Sci 47:4966–4974PubMedCrossRef Gekeler F, Messias A, Ottinger M, Bartz-Schmidt KU, Zrenner E (2006) Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects. Invest Ophthalmol Vis Sci 47:4966–4974PubMedCrossRef
18.
go back to reference Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18:988PubMed Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18:988PubMed
19.
go back to reference Schatz A, Wilke R, Strasser T, Gekeler F, Messias A, Zrenner E (2011) Assessment of "non-recordable" electroretinograms by 9 Hz flicker stimulation under scotopic conditions. Doc Ophthalmol. doi:10.1007/s10633-011-9302-1 PubMed Schatz A, Wilke R, Strasser T, Gekeler F, Messias A, Zrenner E (2011) Assessment of "non-recordable" electroretinograms by 9 Hz flicker stimulation under scotopic conditions. Doc Ophthalmol. doi:10.​1007/​s10633-011-9302-1 PubMed
20.
go back to reference Naka KI, Rushton WA (1968) S-potential and dark adaptation in fish. J Physiol 194:259–269PubMed Naka KI, Rushton WA (1968) S-potential and dark adaptation in fish. J Physiol 194:259–269PubMed
21.
go back to reference Brown JL, Hill JH, Burke RE (1957) The effect of hypoxia on the human electroretinogram. Am J Ophthalmol 44:57–67PubMed Brown JL, Hill JH, Burke RE (1957) The effect of hypoxia on the human electroretinogram. Am J Ophthalmol 44:57–67PubMed
22.
go back to reference Tinjust D, Kergoat H, Lovasik JV (2002) Neuroretinal function during mild systemic hypoxia. Aviat Space Environ Med 73:1189–1194PubMed Tinjust D, Kergoat H, Lovasik JV (2002) Neuroretinal function during mild systemic hypoxia. Aviat Space Environ Med 73:1189–1194PubMed
23.
go back to reference Rimmer TJ, Smith MJ, Ogilvy AJ, McNally PG (1995) Effects of hypoxemia on the electroretinogram in diabetics. Doc Ophthalmol 91:311–321PubMedCrossRef Rimmer TJ, Smith MJ, Ogilvy AJ, McNally PG (1995) Effects of hypoxemia on the electroretinogram in diabetics. Doc Ophthalmol 91:311–321PubMedCrossRef
24.
go back to reference Feigl B, Stewart I, Brown B (2007) Experimental hypoxia in human eyes: implications for ischaemic disease. Clin Neurophysiol 118:887–895PubMedCrossRef Feigl B, Stewart I, Brown B (2007) Experimental hypoxia in human eyes: implications for ischaemic disease. Clin Neurophysiol 118:887–895PubMedCrossRef
25.
go back to reference Feigl B, Stewart IB, Brown B, Zele AJ (2008) Local neuroretinal function during acute hypoxia in healthy older people. Invest Ophthalmol Vis Sci 49:807–813PubMedCrossRef Feigl B, Stewart IB, Brown B, Zele AJ (2008) Local neuroretinal function during acute hypoxia in healthy older people. Invest Ophthalmol Vis Sci 49:807–813PubMedCrossRef
26.
go back to reference Klemp K, Lund-Andersen H, Sander B, Larsen M (2007) The effect of acute hypoxia and hyperoxia on the slow multifocal electroretinogram in healthy subjects. Invest Ophthalmol Vis Sci 48:3405–3412PubMedCrossRef Klemp K, Lund-Andersen H, Sander B, Larsen M (2007) The effect of acute hypoxia and hyperoxia on the slow multifocal electroretinogram in healthy subjects. Invest Ophthalmol Vis Sci 48:3405–3412PubMedCrossRef
27.
go back to reference Kergoat H, Herard ME, Lemay M (2006) RGC sensitivity to mild systemic hypoxia. Invest Ophthalmol Vis Sci 47:5423–5427PubMedCrossRef Kergoat H, Herard ME, Lemay M (2006) RGC sensitivity to mild systemic hypoxia. Invest Ophthalmol Vis Sci 47:5423–5427PubMedCrossRef
28.
go back to reference Janaky M, Grosz A, Toth E, Benedek K, Benedek G (2007) Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human ERG. Doc Ophthalmol 114:45–51PubMedCrossRef Janaky M, Grosz A, Toth E, Benedek K, Benedek G (2007) Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human ERG. Doc Ophthalmol 114:45–51PubMedCrossRef
29.
go back to reference Niess AM, Fehrenbach E, Lorenz I, Muller A, Northoff H, Dickhuth HH, Schneider EM (2004) Antioxidant intervention does not affect the response of plasma erythropoietin to short-term normobaric hypoxia in humans. J Appl Physiol 96:1231–1235PubMedCrossRef Niess AM, Fehrenbach E, Lorenz I, Muller A, Northoff H, Dickhuth HH, Schneider EM (2004) Antioxidant intervention does not affect the response of plasma erythropoietin to short-term normobaric hypoxia in humans. J Appl Physiol 96:1231–1235PubMedCrossRef
30.
go back to reference Linsenmeier RA (1990) Electrophysiological consequences of retinal hypoxia. Graefes Arch Clin Exp Ophthalmol 228:143–150PubMed Linsenmeier RA (1990) Electrophysiological consequences of retinal hypoxia. Graefes Arch Clin Exp Ophthalmol 228:143–150PubMed
31.
go back to reference Brunette JR, Olivier P, Zaharia M, Blondeau P, Lafond G (1986) Rod–cone differences in response to retinal ischemia in rabbit. Doc Ophthalmol 63:359–365PubMedCrossRef Brunette JR, Olivier P, Zaharia M, Blondeau P, Lafond G (1986) Rod–cone differences in response to retinal ischemia in rabbit. Doc Ophthalmol 63:359–365PubMedCrossRef
32.
go back to reference Zaghloul KA, Boahen K, Demb JB (2003) Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J Neurosci 23:2645–2654PubMed Zaghloul KA, Boahen K, Demb JB (2003) Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J Neurosci 23:2645–2654PubMed
33.
go back to reference Chichilnisky EJ, Kalmar RS (2002) Functional asymmetries in ON and OFF ganglion cells of primate retina. J Neurosci 22:2737–2747PubMed Chichilnisky EJ, Kalmar RS (2002) Functional asymmetries in ON and OFF ganglion cells of primate retina. J Neurosci 22:2737–2747PubMed
34.
go back to reference Vardi N, Matesic DF, Manning DR, Liebman PA, Sterling P (1993) Identification of a G-protein in depolarizing rod bipolar cells. Vis Neurosci 10:473–478PubMedCrossRef Vardi N, Matesic DF, Manning DR, Liebman PA, Sterling P (1993) Identification of a G-protein in depolarizing rod bipolar cells. Vis Neurosci 10:473–478PubMedCrossRef
35.
go back to reference Linsenmeier RA, Braun RD (1992) Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol 99:177–197PubMedCrossRef Linsenmeier RA, Braun RD (1992) Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol 99:177–197PubMedCrossRef
36.
go back to reference Sealey KG, Rubuck AS, Campbell EJ (1975) Oxygenated mixed venous PCO2 in healthy subjects. Can Med Assoc J 113:1047–1050PubMedCentralPubMed Sealey KG, Rubuck AS, Campbell EJ (1975) Oxygenated mixed venous PCO2 in healthy subjects. Can Med Assoc J 113:1047–1050PubMedCentralPubMed
Metadata
Title
Electroretinographic assessment of retinal function during acute exposure to normobaric hypoxia
Authors
Andreas Schatz
Maurice Breithaupt
Jens Hudemann
Andreas Niess
André Messias
Eberhart Zrenner
Karl Ulrich Bartz-Schmidt
Florian Gekeler
Gabriel Willmann
Publication date
01-01-2014
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2014
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-013-2504-3

Other articles of this Issue 1/2014

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2014 Go to the issue