Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2011

01-01-2011 | Cataract

Comparison of optical low-coherence reflectometry and applanation ultrasound biometry on intraocular lens power calculation

Authors: Mirjana Bjeloš Rončević, Mladen Bušić, Ivan Čima, Biljana Kuzmanović Elabjer, Damir Bosnar, Daliborka Miletić

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2011

Login to get access

Abstract

Background

The aim of the study was to determine whether the innovative non-contact optical low-coherence reflectometry method utilized by the Lenstar LS 900® agrees sufficiently with applanation ultrasound A-scan technique in routine biometric measurement and intraocular lens power calculation to replace it.

Methods

Twenty-two patients hospitalized at our eye clinic undergoing cataract surgery were assigned to have five consecutive measurements of axial length by two examiners in a single session using applanation ultrasound and the Lenstar. The applanation ultrasound intraocular lens power calculation was based on automated keratometry and applanation ultrasound axial length measurements. The Lenstar intraocular lens power calculation was based on its measurement of keratometry and axial length. Bland–Altman analysis was used to assess interobserver repeatability of applanation ultrasound and the Lenstar as well as agreement between the Lenstar and applanation ultrasound for axial length measurement and intraocular lens power calculation.

Results

Thirty-two eyes of 22 patients were analyzed. In 95% of the observations, predicted refractive error corresponded to –0.26 ± 0.62 D and 0.01 ± 0.20 D obtained with applanation ultrasound and the Lenstar, respectively.

Conclusions

Based on excellent repeatability of the Lenstar and acceptable repeatability of applanation ultrasound, two techniques may be used interchangeably. The predicted refractive error of ±0.20 D in 95% of the observations has never been achieved. Optical low-coherence reflectometry might become a new standard method for biometric measurement needed for intraocular lens-power calculation in patients with cataract.
Literature
1.
go back to reference Akura J, Kaneda S, Hatta S, Matsuura K (2000) Controlling astigmatism in cataract surgery requiring relatively large self-sealing incisions. J Cataract Refract Surg 26:1650–1659CrossRefPubMed Akura J, Kaneda S, Hatta S, Matsuura K (2000) Controlling astigmatism in cataract surgery requiring relatively large self-sealing incisions. J Cataract Refract Surg 26:1650–1659CrossRefPubMed
2.
go back to reference Holzer MP, Mamusa M, Auffarth GU (2009) Accuracy of a new partial coherence interferometry analyser for biometric measurements. Br J Ophthalmol 93:807–810CrossRefPubMed Holzer MP, Mamusa M, Auffarth GU (2009) Accuracy of a new partial coherence interferometry analyser for biometric measurements. Br J Ophthalmol 93:807–810CrossRefPubMed
3.
go back to reference Findl O, Drexler W, Menapace R, Heinzl H, Hitzenberger CK, Fercher AF (2001) Improved prediction of intraocular lens power using partial coherence interferometry. J Cataract Refract Surg 27:861–867CrossRefPubMed Findl O, Drexler W, Menapace R, Heinzl H, Hitzenberger CK, Fercher AF (2001) Improved prediction of intraocular lens power using partial coherence interferometry. J Cataract Refract Surg 27:861–867CrossRefPubMed
4.
go back to reference Reddy AR, Pande MV, Finn P, El-Gogary H (2004) Comparative estimation of anterior chamber depth by ultrasonography, Orbscan II and IOLMaster. J Cataract Refract Surg 30:1268–1271CrossRefPubMed Reddy AR, Pande MV, Finn P, El-Gogary H (2004) Comparative estimation of anterior chamber depth by ultrasonography, Orbscan II and IOLMaster. J Cataract Refract Surg 30:1268–1271CrossRefPubMed
5.
go back to reference Connors R 3rd, Boseman P 3rd, Olson JR (2002) Accuracy and reproducibility of biometry using partial coherence interferometry. J Cataract Refract Surg 28:235–238CrossRefPubMed Connors R 3rd, Boseman P 3rd, Olson JR (2002) Accuracy and reproducibility of biometry using partial coherence interferometry. J Cataract Refract Surg 28:235–238CrossRefPubMed
6.
go back to reference Watson A, Armstrong R (1999) Contact or immersion technique for axial length measurement? Aust N Z J Ophthalmol 27:49–51CrossRefPubMed Watson A, Armstrong R (1999) Contact or immersion technique for axial length measurement? Aust N Z J Ophthalmol 27:49–51CrossRefPubMed
7.
go back to reference Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ (2009) A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol 93:949–953CrossRefPubMed Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ (2009) A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol 93:949–953CrossRefPubMed
8.
go back to reference Cruysberg LP, Doors M, Verbakel F, Berendschot TT, De Brabander J, Nuijts RM (2010) Evaluation of the Lenstar LS900 non-contact biometer. Br J Ophthalmol 94:106–110CrossRefPubMed Cruysberg LP, Doors M, Verbakel F, Berendschot TT, De Brabander J, Nuijts RM (2010) Evaluation of the Lenstar LS900 non-contact biometer. Br J Ophthalmol 94:106–110CrossRefPubMed
9.
go back to reference Rohrer K, Frueh BE, Wälti R, Clemetson IA, Tappeiner C, Goldblum D (2009) Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer. Ophthalmology 116:2087–2092CrossRefPubMed Rohrer K, Frueh BE, Wälti R, Clemetson IA, Tappeiner C, Goldblum D (2009) Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer. Ophthalmology 116:2087–2092CrossRefPubMed
10.
go back to reference Hoffer KJ, Shammas HJ, Savini G (2010) Comparison of 2 laser instruments for measuring axial length. J Cataract Refract Surg 36:644-648. Erratum in: J Cataract Refract Surg 2010; 36:1066 Hoffer KJ, Shammas HJ, Savini G (2010) Comparison of 2 laser instruments for measuring axial length. J Cataract Refract Surg 36:644-648. Erratum in: J Cataract Refract Surg 2010; 36:1066
11.
go back to reference Liampa Z, Kynigopoulos M, Pallas G, Gerding H (2010) Comparison of two partial coherence interferometry devices for ocular biometry. Klin Monbl Augenheilkd 227:285–288CrossRefPubMed Liampa Z, Kynigopoulos M, Pallas G, Gerding H (2010) Comparison of two partial coherence interferometry devices for ocular biometry. Klin Monbl Augenheilkd 227:285–288CrossRefPubMed
13.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMed Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMed
14.
go back to reference Narváez J, Cherwek DH, Stulting RD, Waldron R, Zimmerman GJ, Wessels IF, Waring GO 3rd (2008) Comparing immersion ultrasound with partial coherence interferometry for intraocular lens power calculation. Ophthalmic Surg Lasers Imaging 39:30–34CrossRefPubMed Narváez J, Cherwek DH, Stulting RD, Waldron R, Zimmerman GJ, Wessels IF, Waring GO 3rd (2008) Comparing immersion ultrasound with partial coherence interferometry for intraocular lens power calculation. Ophthalmic Surg Lasers Imaging 39:30–34CrossRefPubMed
15.
go back to reference Packer M, Fine IH, Hoffman RS, Coffman PG, Brown LK (2002) Immersion A-scan compared with partial coherence interferometry. Outcomes analysis. J Cataract Refract Surg 28:239–242CrossRefPubMed Packer M, Fine IH, Hoffman RS, Coffman PG, Brown LK (2002) Immersion A-scan compared with partial coherence interferometry. Outcomes analysis. J Cataract Refract Surg 28:239–242CrossRefPubMed
16.
go back to reference Nemeth J, Fekete O, Pesztenlehrer N (2003) Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J Cataract Refract Surg 29:85–88CrossRefPubMed Nemeth J, Fekete O, Pesztenlehrer N (2003) Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J Cataract Refract Surg 29:85–88CrossRefPubMed
17.
go back to reference Vogel A, Dick HB, Krummenauer F (2001) Reproducibility of optical biometry using partial coherence interferometry. Intraobserver and interobserver reliability. J Cataract Refract Surg 27:1961–1968CrossRefPubMed Vogel A, Dick HB, Krummenauer F (2001) Reproducibility of optical biometry using partial coherence interferometry. Intraobserver and interobserver reliability. J Cataract Refract Surg 27:1961–1968CrossRefPubMed
18.
go back to reference Olsen T (2007) Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster. Acta Ophthalmol Scand 85:84–87CrossRefPubMed Olsen T (2007) Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster. Acta Ophthalmol Scand 85:84–87CrossRefPubMed
19.
20.
go back to reference Raymond S, Favilla I, Santamaria L (2009) Comparing ultrasound biometry with partial coherence interferometry for intraocular lens power calculation: a randomized study. Invest Ophthalmol Vis Sci 50:2547–2552CrossRefPubMed Raymond S, Favilla I, Santamaria L (2009) Comparing ultrasound biometry with partial coherence interferometry for intraocular lens power calculation: a randomized study. Invest Ophthalmol Vis Sci 50:2547–2552CrossRefPubMed
21.
go back to reference Kiss B, Findl O, Menapace R, Wirtitsch M, Petternel V, Drexler W, Rainer G, Georgopoulos M, Hitzenberger CK, Fercher AF (2002) Refractive outcome of cataract surgery using partial coherence interferometry and ultrasound biometry. Clinical feasibility study of a commercial prototype II. J Cataract Refract Surg 28:230–234CrossRefPubMed Kiss B, Findl O, Menapace R, Wirtitsch M, Petternel V, Drexler W, Rainer G, Georgopoulos M, Hitzenberger CK, Fercher AF (2002) Refractive outcome of cataract surgery using partial coherence interferometry and ultrasound biometry. Clinical feasibility study of a commercial prototype II. J Cataract Refract Surg 28:230–234CrossRefPubMed
22.
go back to reference Haigis W, Lege B, Miller N, Schneider B (2000) Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefe´s Arch Clin Exp Ophthalmol 238:765–773CrossRef Haigis W, Lege B, Miller N, Schneider B (2000) Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefe´s Arch Clin Exp Ophthalmol 238:765–773CrossRef
23.
go back to reference Rajan MS, Keilhorn I, Bell JA (2002) Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculation. Eye 16:552–556CrossRefPubMed Rajan MS, Keilhorn I, Bell JA (2002) Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculation. Eye 16:552–556CrossRefPubMed
24.
go back to reference Kugelberg M, Lundström M (2008) Factors related to the degree of success in achieving target refraction in cataract surgery. Swedish National Cataract Register study. J Cataract Refract Surg 34:1935–1939CrossRefPubMed Kugelberg M, Lundström M (2008) Factors related to the degree of success in achieving target refraction in cataract surgery. Swedish National Cataract Register study. J Cataract Refract Surg 34:1935–1939CrossRefPubMed
25.
go back to reference Findl O, Kriechbaum K, Sacu S, Kiss B, Polak K, Nepp J, Schild G, Rainer G, Maca S, Petternel V, Lackner B, Drexler W (2003) Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg 29:1950–1955CrossRefPubMed Findl O, Kriechbaum K, Sacu S, Kiss B, Polak K, Nepp J, Schild G, Rainer G, Maca S, Petternel V, Lackner B, Drexler W (2003) Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg 29:1950–1955CrossRefPubMed
26.
go back to reference Olsen T, Nielsen PJ (1989) Immersion versus contact technique in the measurement of axial length by ultrasound. Acta Ophthalmol 67:101–102 Olsen T, Nielsen PJ (1989) Immersion versus contact technique in the measurement of axial length by ultrasound. Acta Ophthalmol 67:101–102
27.
go back to reference Olsen T (1992) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 18:125–129PubMed Olsen T (1992) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 18:125–129PubMed
28.
go back to reference Rabsilber TM, Jepsen C, Auffarth GU, Holzer MP (2010) Intraocular lens power calculation: clinical comparison of 2 optical biometry devices. J Cataract Refract Surg 36:230–234CrossRefPubMed Rabsilber TM, Jepsen C, Auffarth GU, Holzer MP (2010) Intraocular lens power calculation: clinical comparison of 2 optical biometry devices. J Cataract Refract Surg 36:230–234CrossRefPubMed
Metadata
Title
Comparison of optical low-coherence reflectometry and applanation ultrasound biometry on intraocular lens power calculation
Authors
Mirjana Bjeloš Rončević
Mladen Bušić
Ivan Čima
Biljana Kuzmanović Elabjer
Damir Bosnar
Daliborka Miletić
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2011
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-010-1509-4

Other articles of this Issue 1/2011

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2011 Go to the issue