Skip to main content
Top
Published in: Journal of Neurology 2/2015

01-02-2015 | Original Communication

Theta burst stimulation over the supplementary motor area in Parkinson’s disease

Authors: Carsten Eggers, Miriam Günther, John Rothwell, Lars Timmermann, Diane Ruge

Published in: Journal of Neurology | Issue 2/2015

Login to get access

Abstract

To investigate whether a period of continuous theta burst stimulation (cTBS) over the supplementary motor area (SMA) induces cortical plasticity and thus improves bradykinesia in Parkinson’s disease (PD) in the medication ON and OFF state. In total, 26 patients with Parkinson’s disease were tested with both real and sham stimulation. The group was divided into an OFF-medication (4 females, mean age 65 years, disease duration 6 years) and an ON-medication group (7 females, mean age 61 years, disease duration 7 years) with each containing 13 individuals. Both groups were evaluated in terms of electrophysiological (motor-evoked potentials) and behavioural [Purdue Pegboard test (PPT), UPDRS motor subscore] parameters before (baseline condition) and after a 40-second period of real or sham continuous theta burst stimulation over the SMA ON and OFF dopaminergic drugs. Patients in the OFF group demonstrated an improved UPDRS III score (p < 0.05) and a better performance in the PPT for the less affected side (p < 0.025) compared to baseline after real stimulation. However, electrophysiological parameters did not change in either the ON or the OFF state. cTBS over the SMA has a mild effect on motor symptoms of the upper limb in the OFF state of PD patients. In contrast, stimulation did not change cortico-spinal excitability. A lack of change (i.e. no plasticity) to brain stimulation protocols is a known finding in PD. A clinical improvement in the OFF state, however, contrasts with this and the mechanism of these induced changes is worth further exploration.
Literature
1.
go back to reference Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81CrossRefPubMed Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81CrossRefPubMed
2.
go back to reference Wu AD, Fregni F, Simon DK, Deblieck C, Pascual-Leone A (2008) Noninvasive brain stimulation for Parkinson’s disease and dystonia. Neurother J Am Soc Exp Neurother 5:345–361CrossRef Wu AD, Fregni F, Simon DK, Deblieck C, Pascual-Leone A (2008) Noninvasive brain stimulation for Parkinson’s disease and dystonia. Neurother J Am Soc Exp Neurother 5:345–361CrossRef
3.
go back to reference Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16CrossRefPubMed Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16CrossRefPubMed
4.
go back to reference Lefaucheur JP (2009) Treatment of Parkinson’s disease by cortical stimulation. Expert Rev Neurother 9:1755–1771CrossRefPubMed Lefaucheur JP (2009) Treatment of Parkinson’s disease by cortical stimulation. Expert Rev Neurother 9:1755–1771CrossRefPubMed
5.
go back to reference Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206CrossRefPubMed Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206CrossRefPubMed
6.
go back to reference Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869CrossRefPubMed Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869CrossRefPubMed
7.
go back to reference Jenkins IH, Fernandez W, Playford ED, Lees AJ, Frackowiak RS, Passingham RE et al (1992) Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Ann Neurol 32:749–757CrossRefPubMed Jenkins IH, Fernandez W, Playford ED, Lees AJ, Frackowiak RS, Passingham RE et al (1992) Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Ann Neurol 32:749–757CrossRefPubMed
8.
go back to reference Brooks DJ, Piccini P, Turjanski N, Samuel M (2000) Neuroimaging of dyskinesia. Ann Neurol 47:S154–S158 (discussion S8–9)PubMed Brooks DJ, Piccini P, Turjanski N, Samuel M (2000) Neuroimaging of dyskinesia. Ann Neurol 47:S154–S158 (discussion S8–9)PubMed
9.
go back to reference Randhawa BK, Farley BG, Boyd LA (2013) Repetitive transcranial magnetic stimulation improves handwriting in Parkinson’s disease. Parkinson’s Dis 2013:751925 Randhawa BK, Farley BG, Boyd LA (2013) Repetitive transcranial magnetic stimulation improves handwriting in Parkinson’s disease. Parkinson’s Dis 2013:751925
10.
go back to reference Shirota Y, Ohtsu H, Hamada M, Enomoto H, Ugawa Y (2013) Research Committee on r TMSToPsD. Supplementary motor area stimulation for Parkinson disease: a randomized controlled study. Neurology 80:1400–1405CrossRefPubMed Shirota Y, Ohtsu H, Hamada M, Enomoto H, Ugawa Y (2013) Research Committee on r TMSToPsD. Supplementary motor area stimulation for Parkinson disease: a randomized controlled study. Neurology 80:1400–1405CrossRefPubMed
11.
go back to reference Hamada M, Ugawa Y, Tsuji S (2009) Effectiveness of rTms on Parkinson’s Disease Study Group J. High-frequency rTMS over the supplementary motor area improves bradykinesia in Parkinson’s disease: subanalysis of double-blind sham-controlled study. J Neurol Sci 287:143–146CrossRefPubMed Hamada M, Ugawa Y, Tsuji S (2009) Effectiveness of rTms on Parkinson’s Disease Study Group J. High-frequency rTMS over the supplementary motor area improves bradykinesia in Parkinson’s disease: subanalysis of double-blind sham-controlled study. J Neurol Sci 287:143–146CrossRefPubMed
12.
go back to reference Boylan LS, Pullman SL, Lisanby SH, Spicknall KE, Sackeim HA (2001) Repetitive transcranial magnetic stimulation to SMA worsens complex movements in Parkinson’s disease. Clin Neurophysiol 112:259–264CrossRefPubMed Boylan LS, Pullman SL, Lisanby SH, Spicknall KE, Sackeim HA (2001) Repetitive transcranial magnetic stimulation to SMA worsens complex movements in Parkinson’s disease. Clin Neurophysiol 112:259–264CrossRefPubMed
13.
go back to reference Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M et al (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403CrossRefPubMed Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M et al (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403CrossRefPubMed
14.
go back to reference Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117(Pt 4):847–858CrossRefPubMed Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117(Pt 4):847–858CrossRefPubMed
15.
go back to reference Laviolette L, Nierat MC, Hudson AL, Raux M, Allard E, Similowski T (2013) The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans. PLoS One 8:e62258PubMedCentralCrossRefPubMed Laviolette L, Nierat MC, Hudson AL, Raux M, Allard E, Similowski T (2013) The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans. PLoS One 8:e62258PubMedCentralCrossRefPubMed
16.
go back to reference Legon W, Dionne JK, Staines WR (2013) Continuous theta burst stimulation of the supplementary motor area: effect upon perception and somatosensory and motor evoked potentials. Brain Stimul 6:877–883CrossRefPubMed Legon W, Dionne JK, Staines WR (2013) Continuous theta burst stimulation of the supplementary motor area: effect upon perception and somatosensory and motor evoked potentials. Brain Stimul 6:877–883CrossRefPubMed
17.
go back to reference Crovitz HF, Zener K (1962) A group-test for assessing hand- and eye-dominance. Am J Psychol 75:271–276CrossRefPubMed Crovitz HF, Zener K (1962) A group-test for assessing hand- and eye-dominance. Am J Psychol 75:271–276CrossRefPubMed
18.
go back to reference Hamada M, Ugawa Y, Tsuji S, Effectiveness of rTms on Parkinson’s Disease Study Group J (2008) High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov Disord 23:1524–1531CrossRefPubMed Hamada M, Ugawa Y, Tsuji S, Effectiveness of rTms on Parkinson’s Disease Study Group J (2008) High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov Disord 23:1524–1531CrossRefPubMed
19.
go back to reference Matsunaga K, Maruyama A, Fujiwara T, Nakanishi R, Tsuji S, Rothwell JC (2005) Increased corticospinal excitability after 5 Hz rTMS over the human supplementary motor area. J Physiol 562:295–306PubMedCentralCrossRefPubMed Matsunaga K, Maruyama A, Fujiwara T, Nakanishi R, Tsuji S, Rothwell JC (2005) Increased corticospinal excitability after 5 Hz rTMS over the human supplementary motor area. J Physiol 562:295–306PubMedCentralCrossRefPubMed
20.
go back to reference Terao Y, Furubayashi T, Okabe S, Mochizuki H, Arai N, Kobayashi S et al (2007) Modifying the cortical processing for motor preparation by repetitive transcranial magnetic stimulation. J Cogn Neurosci 19:1556–1573CrossRefPubMed Terao Y, Furubayashi T, Okabe S, Mochizuki H, Arai N, Kobayashi S et al (2007) Modifying the cortical processing for motor preparation by repetitive transcranial magnetic stimulation. J Cogn Neurosci 19:1556–1573CrossRefPubMed
21.
go back to reference Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA (2001) Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry 49:460–463CrossRefPubMed Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA (2001) Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry 49:460–463CrossRefPubMed
22.
go back to reference Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039PubMedCentralCrossRefPubMed Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039PubMedCentralCrossRefPubMed
23.
go back to reference Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function–systematic review of controlled clinical trials. Mov Disord 24:357–363CrossRefPubMed Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function–systematic review of controlled clinical trials. Mov Disord 24:357–363CrossRefPubMed
24.
go back to reference Trost M, Su S, Su P, Yen RF, Tseng HM, Barnes A et al (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. NeuroImage 31:301–307PubMedCentralCrossRefPubMed Trost M, Su S, Su P, Yen RF, Tseng HM, Barnes A et al (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. NeuroImage 31:301–307PubMedCentralCrossRefPubMed
25.
go back to reference Bradberry TJ, Metman LV, Contreras-Vidal JL, van den Munckhof P, Hosey LA, Thompson JL et al (2012) Common and unique responses to dopamine agonist therapy and deep brain stimulation in Parkinson’s disease: an H(2)(15)O PET study. Brain Stimul 5:605–615PubMedCentralCrossRefPubMed Bradberry TJ, Metman LV, Contreras-Vidal JL, van den Munckhof P, Hosey LA, Thompson JL et al (2012) Common and unique responses to dopamine agonist therapy and deep brain stimulation in Parkinson’s disease: an H(2)(15)O PET study. Brain Stimul 5:605–615PubMedCentralCrossRefPubMed
26.
go back to reference Mure H, Tang CC, Argyelan M, Ghilardi MF, Kaplitt MG, Dhawan V et al (2012) Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation. J Neurosci 32:2804–2813PubMedCentralCrossRefPubMed Mure H, Tang CC, Argyelan M, Ghilardi MF, Kaplitt MG, Dhawan V et al (2012) Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation. J Neurosci 32:2804–2813PubMedCentralCrossRefPubMed
27.
go back to reference Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ (2010) The clinically important difference on the unified Parkinson’s disease rating scale. Arch Neurol 67:64–70CrossRefPubMed Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ (2010) The clinically important difference on the unified Parkinson’s disease rating scale. Arch Neurol 67:64–70CrossRefPubMed
28.
go back to reference Gonzalez-Garcia N, Armony JL, Soto J, Trejo D, Alegria MA, Drucker-Colin R (2011) Effects of rTMS on Parkinson’s disease: a longitudinal fMRI study. J Neurol 258:1268–1280CrossRefPubMed Gonzalez-Garcia N, Armony JL, Soto J, Trejo D, Alegria MA, Drucker-Colin R (2011) Effects of rTMS on Parkinson’s disease: a longitudinal fMRI study. J Neurol 258:1268–1280CrossRefPubMed
29.
go back to reference Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN et al (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385CrossRefPubMed Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN et al (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385CrossRefPubMed
30.
go back to reference Kishore A, Popa T, Velayudhan B, Joseph T, Balachandran A, Meunier S (2012) Acute dopamine boost has a negative effect on plasticity of the primary motor cortex in advanced Parkinson’s disease. Brain 135:2074–2088CrossRefPubMed Kishore A, Popa T, Velayudhan B, Joseph T, Balachandran A, Meunier S (2012) Acute dopamine boost has a negative effect on plasticity of the primary motor cortex in advanced Parkinson’s disease. Brain 135:2074–2088CrossRefPubMed
31.
go back to reference Ueki Y, Mima T, Kotb MA, Sawada H, Saiki H, Ikeda A et al (2006) Altered plasticity of the human motor cortex in Parkinson’s disease. Ann Neurol 59:60–71CrossRefPubMed Ueki Y, Mima T, Kotb MA, Sawada H, Saiki H, Ikeda A et al (2006) Altered plasticity of the human motor cortex in Parkinson’s disease. Ann Neurol 59:60–71CrossRefPubMed
32.
go back to reference Ortu E, Ruge D, Deriu F, Rothwell JC (2009) Theta Burst Stimulation over the human primary motor cortex modulates neural processes involved in movement preparation. Clin Neurophysiol 120:1195–1203CrossRefPubMed Ortu E, Ruge D, Deriu F, Rothwell JC (2009) Theta Burst Stimulation over the human primary motor cortex modulates neural processes involved in movement preparation. Clin Neurophysiol 120:1195–1203CrossRefPubMed
33.
go back to reference Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC (2013) The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23:1593–1605CrossRefPubMed Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC (2013) The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23:1593–1605CrossRefPubMed
34.
go back to reference Sommer J, Jansen A, Drager B, Steinstrater O, Breitenstein C, Deppe M et al (2006) Transcranial magnetic stimulation–a sandwich coil design for a better sham. Clin Neurophysiol 117:440–446CrossRefPubMed Sommer J, Jansen A, Drager B, Steinstrater O, Breitenstein C, Deppe M et al (2006) Transcranial magnetic stimulation–a sandwich coil design for a better sham. Clin Neurophysiol 117:440–446CrossRefPubMed
35.
go back to reference Fregni F, Boggio PS, Bermpohl F, Maia F, Rigonatti SP, Barbosa ER et al (2006) Immediate placebo effect in Parkinson’s disease–is the subjective relief accompanied by objective improvement? Eur Neurol 56:222–229CrossRefPubMed Fregni F, Boggio PS, Bermpohl F, Maia F, Rigonatti SP, Barbosa ER et al (2006) Immediate placebo effect in Parkinson’s disease–is the subjective relief accompanied by objective improvement? Eur Neurol 56:222–229CrossRefPubMed
Metadata
Title
Theta burst stimulation over the supplementary motor area in Parkinson’s disease
Authors
Carsten Eggers
Miriam Günther
John Rothwell
Lars Timmermann
Diane Ruge
Publication date
01-02-2015
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 2/2015
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-014-7572-8

Other articles of this Issue 2/2015

Journal of Neurology 2/2015 Go to the issue