Skip to main content
Top
Published in: Journal of Neurology 2/2011

01-05-2011

Continuous dopaminergic stimulation and novel formulations of dopamine agonists

Author: Fabrizio Stocchi

Published in: Journal of Neurology | Special Issue 2/2011

Login to get access

Abstract

There is now accumulating evidence that the combination of progressive pathology of Parkinson’s disease, the change in drug pharmacodynamics, and the pulsatile manner in which short-acting dopaminergic agents stimulate striatal dopamine receptors are the key contributing factors to the priming of the basal ganglia for induction of motor complications. Long-acting drugs provide a more physiological dopaminergic stimulation. Dopamine agonists have been extensively used as monotherapy and add-on therapy to levodopa to treat Parkinson’s disease in the early stage and with motor complications. Today, the new long-acting formulation offers the advantages of an easy use and a more continuous delivery of drug. In this paper the role of new formulations of dopamine agonists in the treatment of parkinsonian patients at different stages of the disease is reviewed.
Literature
1.
go back to reference Olanow CW, Watts RL, Koller WC (2001) An algorithm (decision tree) for the management of Parkinson’s disease: treatment guidelines. Neurology 56(Suppl 5):S1–S86PubMed Olanow CW, Watts RL, Koller WC (2001) An algorithm (decision tree) for the management of Parkinson’s disease: treatment guidelines. Neurology 56(Suppl 5):S1–S86PubMed
3.
go back to reference Miyasaki JM, Martin W, Suchowersky O, Weiner WJ, Lang AE (2002) Practice parameter: initiation of treatment for Parkinson’s disease: an evidence-based review. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 58:11–17 Miyasaki JM, Martin W, Suchowersky O, Weiner WJ, Lang AE (2002) Practice parameter: initiation of treatment for Parkinson’s disease: an evidence-based review. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 58:11–17
4.
go back to reference Rascol O, Goetz C, Koller W, Poewe W, Sampaio C (2002) Treatment interventions for Parkinson’s disease: an evidence-based assessment. Lancet 359:1589–1598PubMedCrossRef Rascol O, Goetz C, Koller W, Poewe W, Sampaio C (2002) Treatment interventions for Parkinson’s disease: an evidence-based assessment. Lancet 359:1589–1598PubMedCrossRef
5.
go back to reference Korczyn AD, Nussbaum M (2002) Emerging therapies in the pharmacological treatment of Parkinson’s disease. Drugs 62:775–786PubMedCrossRef Korczyn AD, Nussbaum M (2002) Emerging therapies in the pharmacological treatment of Parkinson’s disease. Drugs 62:775–786PubMedCrossRef
6.
go back to reference Marsden CD, Parkes JD (1977) Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 1:345–349PubMedCrossRef Marsden CD, Parkes JD (1977) Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 1:345–349PubMedCrossRef
8.
go back to reference Luquin MR, Scipioni O, Vaamonde J, Gershanik O, Obeso JA (1992) Levodopa-induced dyskinesias in Parkinson’s disease: clinical and pharmacological classification. Mov Disord 7:117–124PubMedCrossRef Luquin MR, Scipioni O, Vaamonde J, Gershanik O, Obeso JA (1992) Levodopa-induced dyskinesias in Parkinson’s disease: clinical and pharmacological classification. Mov Disord 7:117–124PubMedCrossRef
9.
go back to reference Marconi R, Lefebvre-Caparros D, Bonnet AM, Vidailhet M, Dubois B, Agid Y (1994) Levodopa-induced dyskinesias in Parkinson’s disease: phenomenology and pathophysiology. Mov Disord 9:2–12PubMedCrossRef Marconi R, Lefebvre-Caparros D, Bonnet AM, Vidailhet M, Dubois B, Agid Y (1994) Levodopa-induced dyskinesias in Parkinson’s disease: phenomenology and pathophysiology. Mov Disord 9:2–12PubMedCrossRef
10.
go back to reference Stocchi F (2009) The hypothesis of the genesis of motor complications and continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 1):S9–S15 (Review) Stocchi F (2009) The hypothesis of the genesis of motor complications and continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 1):S9–S15 (Review)
11.
go back to reference Stacy M, Bowron A, Guttman M, Hauser R, Hughes K, Larsen JP et al (2005) Identification of motor and non motor wearing-off in Parkinson’s disease: Comparison of a patient questionnaire versus a clinician assessment. Mov Disord 20:726–733PubMedCrossRef Stacy M, Bowron A, Guttman M, Hauser R, Hughes K, Larsen JP et al (2005) Identification of motor and non motor wearing-off in Parkinson’s disease: Comparison of a patient questionnaire versus a clinician assessment. Mov Disord 20:726–733PubMedCrossRef
12.
go back to reference Olanow CW, Obeso JA, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 5:677–687PubMedCrossRef Olanow CW, Obeso JA, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 5:677–687PubMedCrossRef
13.
go back to reference Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24PubMedCrossRef Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24PubMedCrossRef
14.
go back to reference Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27PubMed Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27PubMed
15.
go back to reference Abercrombie ED, Bonatz AE, Zigmond MJ (1990) Effects of l-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res 525:36–44PubMedCrossRef Abercrombie ED, Bonatz AE, Zigmond MJ (1990) Effects of l-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res 525:36–44PubMedCrossRef
16.
go back to reference Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM (2004) Real-time decoding of dopamine concentrating changes in the caudate-putamen during tonic and phasic firing. J Neurochem 89:1284–1295CrossRef Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM (2004) Real-time decoding of dopamine concentrating changes in the caudate-putamen during tonic and phasic firing. J Neurochem 89:1284–1295CrossRef
17.
go back to reference Calabresi P (1993) Electrophysiology of dopamine–denervated striatal neurons; implications for Parkinson’s disease. Brain 116:433–452PubMedCrossRef Calabresi P (1993) Electrophysiology of dopamine–denervated striatal neurons; implications for Parkinson’s disease. Brain 116:433–452PubMedCrossRef
18.
go back to reference Centonze D, Gubellini P, Picconi B, Calabresi P, Giacomini P, Bernardi G (1999) Unilateral dopamine denervation blocks corticostriatal LTP. J Neurophysiol 82:3575–3579PubMed Centonze D, Gubellini P, Picconi B, Calabresi P, Giacomini P, Bernardi G (1999) Unilateral dopamine denervation blocks corticostriatal LTP. J Neurophysiol 82:3575–3579PubMed
19.
go back to reference Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P, Fisone G et al (2003) Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat Neurosci 6:501–506PubMed Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P, Fisone G et al (2003) Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat Neurosci 6:501–506PubMed
20.
go back to reference Rodriguez M, Gonzalez J, Sabate M, Obeso J, Pereda E (2003) Firing regulation in dopaminergic cells: effect of the partial degeneration of nigrostriatal system in surviving neurons. Eur J Neurosci 18:53–60PubMedCrossRef Rodriguez M, Gonzalez J, Sabate M, Obeso J, Pereda E (2003) Firing regulation in dopaminergic cells: effect of the partial degeneration of nigrostriatal system in surviving neurons. Eur J Neurosci 18:53–60PubMedCrossRef
21.
go back to reference Stephens B, Mueller AJ, Shering AF, Hood SH, Taggart P, Arbuthnott GW et al (2005) Evidence of a breakdown of corticostriatal connections in Parkinson’s disease. Neuroscience 132:741–754PubMedCrossRef Stephens B, Mueller AJ, Shering AF, Hood SH, Taggart P, Arbuthnott GW et al (2005) Evidence of a breakdown of corticostriatal connections in Parkinson’s disease. Neuroscience 132:741–754PubMedCrossRef
22.
go back to reference Zaja-Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A et al (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64:545–547PubMed Zaja-Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A et al (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64:545–547PubMed
23.
go back to reference Tremblay L, Filion M, Bedard PJ (1989) Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced Parkinsonism. Brain Res 498:17–33PubMedCrossRef Tremblay L, Filion M, Bedard PJ (1989) Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced Parkinsonism. Brain Res 498:17–33PubMedCrossRef
24.
go back to reference Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176PubMedCrossRef Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176PubMedCrossRef
25.
go back to reference De la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB et al (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754CrossRef De la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB et al (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754CrossRef
26.
go back to reference Ballard PA, Tetrud JW, Langston JW (1985) Permanent human Parkinsonism due to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956PubMed Ballard PA, Tetrud JW, Langston JW (1985) Permanent human Parkinsonism due to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956PubMed
27.
go back to reference Bédard PJ, Di Paolo T, Falardeau P, Boucher R (1986) Chronic treatment with l-dopa, but not bromocriptine induces dyskinesia in MPTP-parkinsonian monkeys. Correlation with [3H]spiperone binding. Brain Res 379:294–299PubMedCrossRef Bédard PJ, Di Paolo T, Falardeau P, Boucher R (1986) Chronic treatment with l-dopa, but not bromocriptine induces dyskinesia in MPTP-parkinsonian monkeys. Correlation with [3H]spiperone binding. Brain Res 379:294–299PubMedCrossRef
28.
go back to reference Pearce RK, Banerji T, Jenner P, Marsden CD (1998) De novo administration of ropinirole and bromocriptine induces less dyskinesia than l-dopa in the MPTP-treated marmoset. Mov Disord 13:234–241PubMedCrossRef Pearce RK, Banerji T, Jenner P, Marsden CD (1998) De novo administration of ropinirole and bromocriptine induces less dyskinesia than l-dopa in the MPTP-treated marmoset. Mov Disord 13:234–241PubMedCrossRef
29.
go back to reference Jenner P (2000) Factors influencing the onset and persistence of dyskinesia in MPTP-treated primates. Ann Neurol 47:S90–S99PubMed Jenner P (2000) Factors influencing the onset and persistence of dyskinesia in MPTP-treated primates. Ann Neurol 47:S90–S99PubMed
30.
go back to reference Blanchet PJ, Calon F, Martel JC, Bédard PJ, Di Paolo T, Walters RR et al (1995) Continuous administration decreases and pulsatile administration increases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in MPTP-exposed monkeys. J Pharmacol Exp Ther 272:854–859PubMed Blanchet PJ, Calon F, Martel JC, Bédard PJ, Di Paolo T, Walters RR et al (1995) Continuous administration decreases and pulsatile administration increases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in MPTP-exposed monkeys. J Pharmacol Exp Ther 272:854–859PubMed
31.
go back to reference Bibbiani F, Costantini LC, Patel R, Chase TN (2005) Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol 192:73–78PubMedCrossRef Bibbiani F, Costantini LC, Patel R, Chase TN (2005) Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol 192:73–78PubMedCrossRef
32.
go back to reference Morissette M, Goulet M, Soghomonian JJ, Blanchet PJ, Calon F, Bédard PJ et al (1997) Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with l-DOPA therapy. Brain Res Mol Brain Res 49:55–62PubMedCrossRef Morissette M, Goulet M, Soghomonian JJ, Blanchet PJ, Calon F, Bédard PJ et al (1997) Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with l-DOPA therapy. Brain Res Mol Brain Res 49:55–62PubMedCrossRef
33.
go back to reference Aubert I, Guigoni C, Hakansson K, Li Q, Dovero S, Barthe N et al (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57:17–26PubMedCrossRef Aubert I, Guigoni C, Hakansson K, Li Q, Dovero S, Barthe N et al (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57:17–26PubMedCrossRef
34.
go back to reference Calon F, Grondin R, Morissette M, Goulet M, Blanchet PJ, Di Paolo T et al (2000) Molecular basis of levodopa-induced dyskinesias. Ann Neurol 47:70–78 Calon F, Grondin R, Morissette M, Goulet M, Blanchet PJ, Di Paolo T et al (2000) Molecular basis of levodopa-induced dyskinesias. Ann Neurol 47:70–78
35.
go back to reference Cenci MA, Tranberg A, Andersson M, Hilbertson A (1999) Changes in the regional and compartmental distribution of FosB- and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic l-dopa treatment. Neuroscience 94:515–527PubMedCrossRef Cenci MA, Tranberg A, Andersson M, Hilbertson A (1999) Changes in the regional and compartmental distribution of FosB- and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic l-dopa treatment. Neuroscience 94:515–527PubMedCrossRef
36.
go back to reference Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2002) Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61:186–196PubMed Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2002) Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61:186–196PubMed
37.
go back to reference Boraud T, Bezard E, Bioulac B, Gross CE (2001) Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain 124:546–557PubMedCrossRef Boraud T, Bezard E, Bioulac B, Gross CE (2001) Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain 124:546–557PubMedCrossRef
38.
go back to reference Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038PubMed Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038PubMed
39.
go back to reference Juncos JL, Engber TM, Raisman R, Susel Z, Thibaut F, Ploska A et al (1989) Continuous and intermittent levodopa differentially affect basal ganglia function. Ann Neurol 25:473–478PubMedCrossRef Juncos JL, Engber TM, Raisman R, Susel Z, Thibaut F, Ploska A et al (1989) Continuous and intermittent levodopa differentially affect basal ganglia function. Ann Neurol 25:473–478PubMedCrossRef
40.
go back to reference Engber TM, Susel Z, Juncos JL, Chase TN (1989) Continuous and intermittent levodopa differentially affect rotation induced by D-1 and D-2 dopamine agonists. Eur J Pharmacol 168:291–298PubMedCrossRef Engber TM, Susel Z, Juncos JL, Chase TN (1989) Continuous and intermittent levodopa differentially affect rotation induced by D-1 and D-2 dopamine agonists. Eur J Pharmacol 168:291–298PubMedCrossRef
41.
go back to reference Engber TM, Susel Z, Kuo S, Gerfen CR, Chase TN (1991) Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats. Brain Res 552:113–118PubMedCrossRef Engber TM, Susel Z, Kuo S, Gerfen CR, Chase TN (1991) Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats. Brain Res 552:113–118PubMedCrossRef
42.
go back to reference Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A 5 year study of the incidence of dyskinesia in patients with early parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342:1484–1491PubMedCrossRef Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A 5 year study of the incidence of dyskinesia in patients with early parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342:1484–1491PubMedCrossRef
43.
go back to reference Parkinson Study Group (2000) Pramipexole versus levodopa as initial treatment for Parkinson disease. JAMA 284:231–238CrossRef Parkinson Study Group (2000) Pramipexole versus levodopa as initial treatment for Parkinson disease. JAMA 284:231–238CrossRef
44.
go back to reference Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C et al (2003) Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 54:93–101PubMedCrossRef Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C et al (2003) Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 54:93–101PubMedCrossRef
45.
go back to reference Parkinson Study Group (2002) Dopamine transporter brain imaging to assess the effects of pramipexole versus levodopa on Parkinson disease progression. JAMA 287:1653–1661CrossRef Parkinson Study Group (2002) Dopamine transporter brain imaging to assess the effects of pramipexole versus levodopa on Parkinson disease progression. JAMA 287:1653–1661CrossRef
46.
go back to reference Nutt JG, Obeso JA, Stocchi F (2000) Continuous dopamine receptor stimulation in advanced Parkinson’s disease. Trends Neurosci 23:109–115CrossRef Nutt JG, Obeso JA, Stocchi F (2000) Continuous dopamine receptor stimulation in advanced Parkinson’s disease. Trends Neurosci 23:109–115CrossRef
47.
go back to reference Stocchi F, Ruggieri S, Vacca L, Olanow CW (2002) Prospective randomized trial of lisuride infusion versus oral levodopa in PD patients. Brain 125:2058–2066PubMedCrossRef Stocchi F, Ruggieri S, Vacca L, Olanow CW (2002) Prospective randomized trial of lisuride infusion versus oral levodopa in PD patients. Brain 125:2058–2066PubMedCrossRef
48.
go back to reference Olanow CW, Fahn S, Muenter M et al (1994) A multi-center, double-blind, placebo-controlled trial of pergolide as an adjunct to Sinemet in Parkinson’s disease. Mov Disord 9:40–47PubMedCrossRef Olanow CW, Fahn S, Muenter M et al (1994) A multi-center, double-blind, placebo-controlled trial of pergolide as an adjunct to Sinemet in Parkinson’s disease. Mov Disord 9:40–47PubMedCrossRef
49.
go back to reference Lieberman A, Olanow CW, Sethi K et al (1998) A multi-center double blind placebo-controlled trial of ropinirole as an adjunct to l-dopa in the treatment of Parkinson’s disease patients with motor fluctuations. Neurology 51:1057–1062PubMed Lieberman A, Olanow CW, Sethi K et al (1998) A multi-center double blind placebo-controlled trial of ropinirole as an adjunct to l-dopa in the treatment of Parkinson’s disease patients with motor fluctuations. Neurology 51:1057–1062PubMed
50.
go back to reference Pinter MM, Pogarell O, Oertel WH (1999) Efficacy, safety, and tolerance of the non-ergoline dopamine agonist pramipexole in the treatment of advanced Parkinson’s disease: a double blind, placebo controlled, randomised, multicentre study. J Neurol Neurosurg Psychiatry 66:436–441PubMedCrossRef Pinter MM, Pogarell O, Oertel WH (1999) Efficacy, safety, and tolerance of the non-ergoline dopamine agonist pramipexole in the treatment of advanced Parkinson’s disease: a double blind, placebo controlled, randomised, multicentre study. J Neurol Neurosurg Psychiatry 66:436–441PubMedCrossRef
51.
go back to reference Clarke CE, Deane KH (2001) Cabergoline for levodopa-induced complications in Parkinson’s disease. Cochrane Database Syst Rev 1:CD001518PubMed Clarke CE, Deane KH (2001) Cabergoline for levodopa-induced complications in Parkinson’s disease. Cochrane Database Syst Rev 1:CD001518PubMed
52.
go back to reference Talati R, Baker WL, Patel AA, Reinhart K, Coleman CI (2009) Adding a dopamine agonist to preexisting levodopa therapy versus levodopa therapy alone in advanced Parkinson’s disease: a meta analysis. Int J Clin Pract 63:613–623PubMedCrossRef Talati R, Baker WL, Patel AA, Reinhart K, Coleman CI (2009) Adding a dopamine agonist to preexisting levodopa therapy versus levodopa therapy alone in advanced Parkinson’s disease: a meta analysis. Int J Clin Pract 63:613–623PubMedCrossRef
53.
go back to reference Stocchi F, Hersh BP, Scott BL, Nausieda PA, Giorgi L (2008) Ease-PD Monotherapy Study Investigators. Ropinirole 24-h prolonged release and ropinirole immediate release in early Parkinson’s disease: a randomized, double-blind, non-inferiority crossover study. Curr Med Res Opin 24:2883–2895PubMedCrossRef Stocchi F, Hersh BP, Scott BL, Nausieda PA, Giorgi L (2008) Ease-PD Monotherapy Study Investigators. Ropinirole 24-h prolonged release and ropinirole immediate release in early Parkinson’s disease: a randomized, double-blind, non-inferiority crossover study. Curr Med Res Opin 24:2883–2895PubMedCrossRef
54.
go back to reference Rascol O, Barone P, Hauser RA et al (2010) Pramipexole Switch Study Group Efficacy, safety, and tolerability of overnight switching from immediate- to once daily extended-release pramipexole in early Parkinson’s disease. Mov Disord 25:2326–2332PubMedCrossRef Rascol O, Barone P, Hauser RA et al (2010) Pramipexole Switch Study Group Efficacy, safety, and tolerability of overnight switching from immediate- to once daily extended-release pramipexole in early Parkinson’s disease. Mov Disord 25:2326–2332PubMedCrossRef
55.
go back to reference Hauser RA, Schapira AH, Rascol O et al (2010) Randomized, double-blind, multicenter evaluation of pramipexole extended release once daily in early Parkinson’s disease. Mov Disord 25:2542–2549PubMedCrossRef Hauser RA, Schapira AH, Rascol O et al (2010) Randomized, double-blind, multicenter evaluation of pramipexole extended release once daily in early Parkinson’s disease. Mov Disord 25:2542–2549PubMedCrossRef
56.
go back to reference Jankovic J, Watts RL, Martin W, Boroojerdi B (2007) Transdermal rotigotine: double-blind, placebo-controlled trial in Parkinson disease. Arch Neurol 64:676–682PubMedCrossRef Jankovic J, Watts RL, Martin W, Boroojerdi B (2007) Transdermal rotigotine: double-blind, placebo-controlled trial in Parkinson disease. Arch Neurol 64:676–682PubMedCrossRef
57.
go back to reference Giladi N, Boroojerdi B, Korczyn AD, Burn DJ, Clarke CE, Schapira AH, SP513 investigators (2007) Rotigotine transdermal patch in early Parkinson’s disease: a randomized, double-blind, controlled study versus placebo and ropinirole. Mov Disord 22:2398–2404PubMedCrossRef Giladi N, Boroojerdi B, Korczyn AD, Burn DJ, Clarke CE, Schapira AH, SP513 investigators (2007) Rotigotine transdermal patch in early Parkinson’s disease: a randomized, double-blind, controlled study versus placebo and ropinirole. Mov Disord 22:2398–2404PubMedCrossRef
58.
go back to reference Watts RL, Lyons KE, Pahwa R et al (2010) Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord 25:858–866PubMedCrossRef Watts RL, Lyons KE, Pahwa R et al (2010) Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord 25:858–866PubMedCrossRef
59.
go back to reference Pahwa R, Stacy MA, Factor SA et al (2007) EASE-PD. Ropinirole 24-h prolonged release: randomized, controlled study in advanced Parkinson disease. Neurology 68:1108–1115PubMedCrossRef Pahwa R, Stacy MA, Factor SA et al (2007) EASE-PD. Ropinirole 24-h prolonged release: randomized, controlled study in advanced Parkinson disease. Neurology 68:1108–1115PubMedCrossRef
60.
go back to reference Stocchi F, Giorgi L, Hunter B, Schapira AH. PREPARED: comparison of prolonged and immediate release ropinirole in advanced Parkinson’s disease. Mov Disord (in press) Stocchi F, Giorgi L, Hunter B, Schapira AH. PREPARED: comparison of prolonged and immediate release ropinirole in advanced Parkinson’s disease. Mov Disord (in press)
61.
go back to reference LeWitt PA, Lyons KE, Pahwa R, SP 650 Study Group (2007) Advanced Parkinson disease treated with rotigotine transdermal system: PREFER Study. Neurology 68:1262–1267PubMedCrossRef LeWitt PA, Lyons KE, Pahwa R, SP 650 Study Group (2007) Advanced Parkinson disease treated with rotigotine transdermal system: PREFER Study. Neurology 68:1262–1267PubMedCrossRef
62.
go back to reference Poewe WH, Rascol O, Quinn N et al (2007) Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol 6:513–520PubMedCrossRef Poewe WH, Rascol O, Quinn N et al (2007) Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol 6:513–520PubMedCrossRef
63.
go back to reference Trenkwalder C, Kies B, Rudzinska M et al (2011) Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: A double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord 1:90–99CrossRef Trenkwalder C, Kies B, Rudzinska M et al (2011) Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: A double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord 1:90–99CrossRef
64.
65.
go back to reference Driver-Dunckley E, Samanta J, Stacy M (2003) Pathological gambling associated with dopamine agonist therapy in Parkinson’s disease. Neurology 61:422–423PubMed Driver-Dunckley E, Samanta J, Stacy M (2003) Pathological gambling associated with dopamine agonist therapy in Parkinson’s disease. Neurology 61:422–423PubMed
66.
go back to reference Nirenberg MJ, Waters C (2006) Compulsive eating and weight gain related to dopamine agonist use. Mov Disord 21:524–529PubMedCrossRef Nirenberg MJ, Waters C (2006) Compulsive eating and weight gain related to dopamine agonist use. Mov Disord 21:524–529PubMedCrossRef
67.
go back to reference Brodsky MA, Godbold J, Roth T, Olanow CW (2003) Sleepiness in Parkinson’s disease: a controlled study. Mov Disord 18:668–672PubMedCrossRef Brodsky MA, Godbold J, Roth T, Olanow CW (2003) Sleepiness in Parkinson’s disease: a controlled study. Mov Disord 18:668–672PubMedCrossRef
68.
go back to reference Zanettini R, Antonini A, Gatto G et al (2007) Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 35:639–646 Zanettini R, Antonini A, Gatto G et al (2007) Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 35:639–646
Metadata
Title
Continuous dopaminergic stimulation and novel formulations of dopamine agonists
Author
Fabrizio Stocchi
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
Journal of Neurology / Issue Special Issue 2/2011
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-011-6024-y

Other articles of this Special Issue 2/2011

Journal of Neurology 2/2011 Go to the issue