Skip to main content
Top
Published in: Journal of Neurology 5/2011

Open Access 01-05-2011 | Original Communication

Congenital prosopagnosia: multistage anatomical and functional deficits in face processing circuitry

Authors: V. Dinkelacker, M. Grüter, P. Klaver, T. Grüter, K. Specht, S. Weis, I. Kennerknecht, C. E. Elger, G. Fernandez

Published in: Journal of Neurology | Issue 5/2011

Login to get access

Abstract

Face recognition is a primary social skill which depends on a distributed neural network. A pronounced face recognition deficit in the absence of any lesion is seen in congenital prosopagnosia. This study investigating 24 congenital prosopagnosic subjects and 25 control subjects aims at elucidating its neural basis with fMRI and voxel-based morphometry. We found a comprehensive behavioral pattern, an impairment in visual recognition for faces and buildings that spared long-term memory for faces with negative valence. Anatomical analysis revealed diminished gray matter density in the bilateral lingual gyrus, the right middle temporal gyrus, and the dorsolateral prefrontal cortex. In most of these areas, gray matter density correlated with memory success. Decreased functional activation was found in the left fusiform gyrus, a crucial area for face processing, and in the dorsolateral prefrontal cortex, whereas activation of the medial prefrontal cortex was enhanced. Hence, our data lend strength to the hypothesis that congenital prosopagnosia is explained by network dysfunction and suggest that anatomic curtailing of visual processing in the lingual gyrus plays a substantial role. The dysfunctional circuitry further encompasses the fusiform gyrus and the dorsolateral prefrontal cortex, which may contribute to their difficulties in long-term memory for complex visual information. Despite their deficits in face identity recognition, processing of emotion related information is preserved and possibly mediated by the medial prefrontal cortex. Congenital prosopagnosia may, therefore, be a blueprint of differential curtailing in networks of visual cognition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bouvier SE, Engel SA (2006) Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb Cortex 16:183–191PubMedCrossRef Bouvier SE, Engel SA (2006) Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb Cortex 16:183–191PubMedCrossRef
2.
go back to reference Damasio AR, Damasio H, Van Hoesen GW (1982) Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32:331–341PubMed Damasio AR, Damasio H, Van Hoesen GW (1982) Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32:331–341PubMed
3.
go back to reference Kennerknecht I, Grueter T, Welling B, Wentzek S, Horst J et al (2006) First report of prevalence of non-syndromic hereditary prosopagnosia (HPA). Am J Med Genet A 140:1617–1622PubMed Kennerknecht I, Grueter T, Welling B, Wentzek S, Horst J et al (2006) First report of prevalence of non-syndromic hereditary prosopagnosia (HPA). Am J Med Genet A 140:1617–1622PubMed
4.
go back to reference Kennerknecht I, Ho NY, Wong VC (2008) Prevalence of hereditary prosopagnosia (HPA) in Hong Kong Chinese population. Am J Med Genet A 146A:2863–2870PubMedCrossRef Kennerknecht I, Ho NY, Wong VC (2008) Prevalence of hereditary prosopagnosia (HPA) in Hong Kong Chinese population. Am J Med Genet A 146A:2863–2870PubMedCrossRef
5.
go back to reference Kennerknecht I, Pluempe N, Welling B (2008) Congenital prosopagnosia–a common hereditary cognitive dysfunction in humans. Front Biosci 13:3150–3158PubMedCrossRef Kennerknecht I, Pluempe N, Welling B (2008) Congenital prosopagnosia–a common hereditary cognitive dysfunction in humans. Front Biosci 13:3150–3158PubMedCrossRef
6.
go back to reference Kennerknecht I, Plumpe N, Edwards S, Raman R (2007) Hereditary prosopagnosia (HPA): the first report outside the Caucasian population. J Hum Genet 52:230–236PubMedCrossRef Kennerknecht I, Plumpe N, Edwards S, Raman R (2007) Hereditary prosopagnosia (HPA): the first report outside the Caucasian population. J Hum Genet 52:230–236PubMedCrossRef
7.
go back to reference Behrmann M, Avidan G (2005) Congenital prosopagnosia: face-blind from birth. Trends Cogn Sci 9:180–187PubMedCrossRef Behrmann M, Avidan G (2005) Congenital prosopagnosia: face-blind from birth. Trends Cogn Sci 9:180–187PubMedCrossRef
8.
go back to reference Thomas C, Avidan G, Humphreys K, Jung KJ, Gao F et al (2009) Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia. Nat Neurosci 12:29–31PubMedCrossRef Thomas C, Avidan G, Humphreys K, Jung KJ, Gao F et al (2009) Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia. Nat Neurosci 12:29–31PubMedCrossRef
9.
go back to reference Grüter T, Carbon CC (2010) Neuroscience. Escaping attention. Science 328(5977):435–436 Grüter T, Carbon CC (2010) Neuroscience. Escaping attention. Science 328(5977):435–436
10.
go back to reference Dobel C, Bolte J, Aicher M, Schweinberger SR (2007) Prosopagnosia without apparent cause: overview and diagnosis of six cases. Cortex 43:718–733PubMedCrossRef Dobel C, Bolte J, Aicher M, Schweinberger SR (2007) Prosopagnosia without apparent cause: overview and diagnosis of six cases. Cortex 43:718–733PubMedCrossRef
11.
go back to reference Duchaine B, Nakayama K (2006) The Cambridge Face Memory Test: results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia 44:576–585PubMedCrossRef Duchaine B, Nakayama K (2006) The Cambridge Face Memory Test: results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia 44:576–585PubMedCrossRef
12.
go back to reference Duchaine BC, Parker H, Nakayama K (2003) Normal recognition of emotion in a prosopagnosic. Perception 32:827–838PubMedCrossRef Duchaine BC, Parker H, Nakayama K (2003) Normal recognition of emotion in a prosopagnosic. Perception 32:827–838PubMedCrossRef
13.
go back to reference Duchaine BC, Dingle K, Butterworth E, Nakayama K (2004) Normal greeble learning in a severe case of developmental prosopagnosia. Neuron 43:469–473PubMedCrossRef Duchaine BC, Dingle K, Butterworth E, Nakayama K (2004) Normal greeble learning in a severe case of developmental prosopagnosia. Neuron 43:469–473PubMedCrossRef
14.
go back to reference Dobel C, Putsche C, Zwitserlood P, Junghofer M (2008) Early left-hemispheric dysfunction of face processing in congenital prosopagnosia: an MEG study. PLoS ONE 3:e2326PubMedCrossRef Dobel C, Putsche C, Zwitserlood P, Junghofer M (2008) Early left-hemispheric dysfunction of face processing in congenital prosopagnosia: an MEG study. PLoS ONE 3:e2326PubMedCrossRef
15.
go back to reference Behrmann M, Avidan G, Gao F, Black S (2007) Structural imaging reveals anatomical alterations in inferotemporal cortex in congenital prosopagnosia. Cereb Cortex 17(10):2354–2363 Behrmann M, Avidan G, Gao F, Black S (2007) Structural imaging reveals anatomical alterations in inferotemporal cortex in congenital prosopagnosia. Cereb Cortex 17(10):2354–2363
16.
go back to reference Garrido L, Furl N, Draganski B, Weiskopf N, Stevens J et al (2009) Voxel-based morphometry reveals reduced grey matter volume in the temporal cortex of developmental prosopagnosics. Brain 132:3443–3455PubMedCrossRef Garrido L, Furl N, Draganski B, Weiskopf N, Stevens J et al (2009) Voxel-based morphometry reveals reduced grey matter volume in the temporal cortex of developmental prosopagnosics. Brain 132:3443–3455PubMedCrossRef
17.
go back to reference Avidan G, Hasson U, Malach R, Behrmann M (2005) Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings. J Cogn Neurosci 17:1150–1167PubMedCrossRef Avidan G, Hasson U, Malach R, Behrmann M (2005) Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings. J Cogn Neurosci 17:1150–1167PubMedCrossRef
18.
go back to reference Avidan G, Behrmann M (2009) Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia. Curr Biol 19:1146–1150PubMedCrossRef Avidan G, Behrmann M (2009) Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia. Curr Biol 19:1146–1150PubMedCrossRef
19.
go back to reference Grueter M, Grueter T, Bell V, Horst J, Laskowski W et al (2007) Hereditary prosopagnosia: the first case series. Cortex 43:734–749PubMedCrossRef Grueter M, Grueter T, Bell V, Horst J, Laskowski W et al (2007) Hereditary prosopagnosia: the first case series. Cortex 43:734–749PubMedCrossRef
20.
go back to reference Grüter T, Grüter M, Carbon CC (2008) Neural and genetic foundations of face recognition and prosopagnosia. J Neuropsychol 2(Pt 1):79–97PubMedCrossRef Grüter T, Grüter M, Carbon CC (2008) Neural and genetic foundations of face recognition and prosopagnosia. J Neuropsychol 2(Pt 1):79–97PubMedCrossRef
21.
go back to reference Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233PubMedCrossRef Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233PubMedCrossRef
22.
go back to reference Gobbini MI, Haxby JV (2007) Neural systems for recognition of familiar faces. Neuropsychologia 45:32–41PubMedCrossRef Gobbini MI, Haxby JV (2007) Neural systems for recognition of familiar faces. Neuropsychologia 45:32–41PubMedCrossRef
23.
go back to reference Humphreys K, Minshew N, Leonard GL, Behrmann M (2007) A fine-grained analysis of facial expression processing in high-functioning adults with autism. Neuropsychologia 45:685–695PubMedCrossRef Humphreys K, Minshew N, Leonard GL, Behrmann M (2007) A fine-grained analysis of facial expression processing in high-functioning adults with autism. Neuropsychologia 45:685–695PubMedCrossRef
24.
go back to reference Grüter T, Grüter M (2007) Prosopagnosia in biographies and autobiographies. Perception 36:299–301PubMedCrossRef Grüter T, Grüter M (2007) Prosopagnosia in biographies and autobiographies. Perception 36:299–301PubMedCrossRef
25.
go back to reference von Kriegstein K, Dogan O, Grüter M, Giraud AL, Kell CA et al (2008) Simulation of talking faces in the human brain improves auditory speech recognition. Proc Natl Acad Sci USA 105:6747–6752CrossRef von Kriegstein K, Dogan O, Grüter M, Giraud AL, Kell CA et al (2008) Simulation of talking faces in the human brain improves auditory speech recognition. Proc Natl Acad Sci USA 105:6747–6752CrossRef
26.
go back to reference Grüter T, Grüter M, Carbon CC (2010) Congenital prosopagnosia: diagnosis and mental imagery: commentary on “Tree JJ, and Wilkie J. Face and object imagery in congenital prosopagnosia: a case series.” Cortex Grüter T, Grüter M, Carbon CC (2010) Congenital prosopagnosia: diagnosis and mental imagery: commentary on “Tree JJ, and Wilkie J. Face and object imagery in congenital prosopagnosia: a case series.” Cortex
27.
go back to reference Ekman P, Friesen W (1976) Pictures of facial affects. Consulting Psychologist Press, Palo Alto Ekman P, Friesen W (1976) Pictures of facial affects. Consulting Psychologist Press, Palo Alto
28.
go back to reference Cuthbert BN, Bradley MM, Lang PJ (1996) Probing picture perception: activation and emotion. Psychophysiology 33:103–111PubMedCrossRef Cuthbert BN, Bradley MM, Lang PJ (1996) Probing picture perception: activation and emotion. Psychophysiology 33:103–111PubMedCrossRef
29.
go back to reference Lundqvist D, Litton JE (1998) The averaged Karolinska directed emotional faces—AKDEF: psychology section. Karolinska Institutet, Stockholm Lundqvist D, Litton JE (1998) The averaged Karolinska directed emotional faces—AKDEF: psychology section. Karolinska Institutet, Stockholm
30.
go back to reference Kesler-West ML, Andersen AH, Smith CD, Avison MJ, Davis CE et al (2001) Neural substrates of facial emotion processing using fMRI. Brain Res Cogn Brain Res 11:213–226PubMedCrossRef Kesler-West ML, Andersen AH, Smith CD, Avison MJ, Davis CE et al (2001) Neural substrates of facial emotion processing using fMRI. Brain Res Cogn Brain Res 11:213–226PubMedCrossRef
31.
go back to reference Nakamura K, Kawashima R, Sato N, Nakamura A, Sugiura M et al (2000) Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. Brain 123(Pt 9):1903–1912PubMedCrossRef Nakamura K, Kawashima R, Sato N, Nakamura A, Sugiura M et al (2000) Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. Brain 123(Pt 9):1903–1912PubMedCrossRef
32.
go back to reference Lobmaier JS, Klaver P, Loenneker T, Martin E, Mast FW (2008) Featural and configural face processing strategies: evidence from a functional magnetic resonance imaging study. Neuroreport 19:287–291PubMedCrossRef Lobmaier JS, Klaver P, Loenneker T, Martin E, Mast FW (2008) Featural and configural face processing strategies: evidence from a functional magnetic resonance imaging study. Neuroreport 19:287–291PubMedCrossRef
33.
go back to reference Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36PubMedCrossRef Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36PubMedCrossRef
34.
go back to reference Specht K, Minnerop M, Müller-Hübenthal J, Klockgether T (2005) Voxel-based analysis of multiple-system atrophy of cerebellar type: complementary results by combining voxel-based morphometry and voxel-based relaxometry. Neuroimage 25:287–293PubMedCrossRef Specht K, Minnerop M, Müller-Hübenthal J, Klockgether T (2005) Voxel-based analysis of multiple-system atrophy of cerebellar type: complementary results by combining voxel-based morphometry and voxel-based relaxometry. Neuroimage 25:287–293PubMedCrossRef
35.
go back to reference Friston KJ, Glaser DE, Henson RNA, Kiebel S, Phillips C et al (2002) Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16:484–512PubMedCrossRef Friston KJ, Glaser DE, Henson RNA, Kiebel S, Phillips C et al (2002) Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16:484–512PubMedCrossRef
36.
go back to reference Harmer CJ, Thilo KV, Rothwell JC, Goodwin GM (2001) Transcranial magnetic stimulation of medial-frontal cortex impairs the processing of angry facial expressions. Nat Neurosci 4:17–18PubMedCrossRef Harmer CJ, Thilo KV, Rothwell JC, Goodwin GM (2001) Transcranial magnetic stimulation of medial-frontal cortex impairs the processing of angry facial expressions. Nat Neurosci 4:17–18PubMedCrossRef
37.
go back to reference Grüter T, Grüter M, Bell V, Carbon CC (2009) Visual mental imagery in congenital prosopagnosia. Neurosci Lett 453:135–140PubMedCrossRef Grüter T, Grüter M, Bell V, Carbon CC (2009) Visual mental imagery in congenital prosopagnosia. Neurosci Lett 453:135–140PubMedCrossRef
38.
go back to reference Behrmann M, Avidan G, Marotta JJ, Kimchi R (2005) Detailed exploration of face-related processing in congenital prosopagnosia: 1. Behavioral findings. J Cogn Neurosci 17:1130–1149PubMedCrossRef Behrmann M, Avidan G, Marotta JJ, Kimchi R (2005) Detailed exploration of face-related processing in congenital prosopagnosia: 1. Behavioral findings. J Cogn Neurosci 17:1130–1149PubMedCrossRef
39.
go back to reference Yovel G, Duchaine B (2006) Specialized face perception mechanisms extract both part and spacing information: evidence from developmental prosopagnosia. J Cogn Neurosci 18:580–593PubMedCrossRef Yovel G, Duchaine B (2006) Specialized face perception mechanisms extract both part and spacing information: evidence from developmental prosopagnosia. J Cogn Neurosci 18:580–593PubMedCrossRef
40.
go back to reference Stollhoff R, Jost J, Elze T, Kennerknecht I (2010) The early time course of compensatory face processing in congenital prosopagnosia. PLoS One 5(7):e11482 Stollhoff R, Jost J, Elze T, Kennerknecht I (2010) The early time course of compensatory face processing in congenital prosopagnosia. PLoS One 5(7):e11482
41.
go back to reference Duchaine B, Germine L, Nakayama K (2007) Family resemblance: ten family members with prosopagnosia and within-class object agnosia. Cogn Neuropsychol 24:419–430PubMedCrossRef Duchaine B, Germine L, Nakayama K (2007) Family resemblance: ten family members with prosopagnosia and within-class object agnosia. Cogn Neuropsychol 24:419–430PubMedCrossRef
42.
go back to reference Humphreys K, Minshew N, Leonard GL, Behrmann M (2007) A fine-grained analysis of facial expression processing in high-functioning adults with autism. Neuropsychologia 45:685–695PubMedCrossRef Humphreys K, Minshew N, Leonard GL, Behrmann M (2007) A fine-grained analysis of facial expression processing in high-functioning adults with autism. Neuropsychologia 45:685–695PubMedCrossRef
43.
go back to reference Aguirre GK, Zarahn E, D’Esposito M (1998) An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21:373–383PubMedCrossRef Aguirre GK, Zarahn E, D’Esposito M (1998) An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21:373–383PubMedCrossRef
44.
go back to reference Levy I, Hasson U, Harel M, Malach R (2004) Functional analysis of the periphery effect in human building related areas. Hum Brain Mapp 22:15–26PubMedCrossRef Levy I, Hasson U, Harel M, Malach R (2004) Functional analysis of the periphery effect in human building related areas. Hum Brain Mapp 22:15–26PubMedCrossRef
45.
go back to reference Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center-periphery organization of human object areas. Nat Neurosci 4:533–539PubMed Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center-periphery organization of human object areas. Nat Neurosci 4:533–539PubMed
46.
go back to reference Beauchamp MS, Lee KE, Haxby JV, Martin A (2003) FMRI responses to video and point-light displays of moving humans and manipulable objects. J Cogn Neurosci 15:991–1001PubMedCrossRef Beauchamp MS, Lee KE, Haxby JV, Martin A (2003) FMRI responses to video and point-light displays of moving humans and manipulable objects. J Cogn Neurosci 15:991–1001PubMedCrossRef
47.
go back to reference Gorno-Tempini ML, Price CJ (2001) Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items. Brain 124:2087–2097PubMedCrossRef Gorno-Tempini ML, Price CJ (2001) Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items. Brain 124:2087–2097PubMedCrossRef
48.
go back to reference Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L et al (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47:215–223PubMedCrossRef Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L et al (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47:215–223PubMedCrossRef
49.
go back to reference Schmahmann JD, Pandya DN (2007) The complex history of the fronto-occipital fasciculus. J Hist Neurosci 16:362–377PubMedCrossRef Schmahmann JD, Pandya DN (2007) The complex history of the fronto-occipital fasciculus. J Hist Neurosci 16:362–377PubMedCrossRef
50.
go back to reference Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F et al (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–2395PubMedCrossRef Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F et al (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–2395PubMedCrossRef
51.
go back to reference Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y et al (1998) A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp 6:316–328PubMedCrossRef Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y et al (1998) A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp 6:316–328PubMedCrossRef
52.
go back to reference Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311PubMed Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311PubMed
53.
go back to reference Ishai A, Schmidt CF, Boesiger P (2005) Face perception is mediated by a distributed cortical network. Brain Res Bull 67:87–93PubMedCrossRef Ishai A, Schmidt CF, Boesiger P (2005) Face perception is mediated by a distributed cortical network. Brain Res Bull 67:87–93PubMedCrossRef
54.
go back to reference Van den Stock J, van de Riet WA, Righart R, de Gelder B (2008) Neural correlates of perceiving emotional faces and bodies in developmental prosopagnosia: an event-related fMRI-study. PLoS One 3:e3195PubMedCrossRef Van den Stock J, van de Riet WA, Righart R, de Gelder B (2008) Neural correlates of perceiving emotional faces and bodies in developmental prosopagnosia: an event-related fMRI-study. PLoS One 3:e3195PubMedCrossRef
55.
go back to reference Minnebusch DA, Suchan B, Koster O, Daum I (2009) A bilateral occipitotemporal network mediates face perception. Behav Brain Res 198:179–185PubMedCrossRef Minnebusch DA, Suchan B, Koster O, Daum I (2009) A bilateral occipitotemporal network mediates face perception. Behav Brain Res 198:179–185PubMedCrossRef
56.
go back to reference Ranganath C, Cohen MX, Dam C, D’Esposito M (2004) Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval. J Neurosci 24:3917–3925PubMedCrossRef Ranganath C, Cohen MX, Dam C, D’Esposito M (2004) Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval. J Neurosci 24:3917–3925PubMedCrossRef
57.
go back to reference Druzgal TJ, D’Esposito M (2001) A neural network reflecting decisions about human faces. Neuron 32:947–955PubMedCrossRef Druzgal TJ, D’Esposito M (2001) A neural network reflecting decisions about human faces. Neuron 32:947–955PubMedCrossRef
58.
go back to reference Gazzaley A, Rissman J, D’Esposito M (2004) Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci 4:580–599PubMedCrossRef Gazzaley A, Rissman J, D’Esposito M (2004) Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci 4:580–599PubMedCrossRef
59.
go back to reference Ranganath C, Cohen MX, Brozinsky CJ (2005) Working memory maintenance contributes to long-term memory formation: neural and behavioral evidence. J Cogn Neurosci 17:994–1010PubMedCrossRef Ranganath C, Cohen MX, Brozinsky CJ (2005) Working memory maintenance contributes to long-term memory formation: neural and behavioral evidence. J Cogn Neurosci 17:994–1010PubMedCrossRef
60.
go back to reference Kim H Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. Neuroimage 50: 1648–1657 Kim H Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. Neuroimage 50: 1648–1657
61.
go back to reference Blumenfeld RS, Parks CM, Yonelinas AP, Ranganath C (2011) Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. J Cogn Neurosci 23(1):257–265 Blumenfeld RS, Parks CM, Yonelinas AP, Ranganath C (2011) Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. J Cogn Neurosci 23(1):257–265
62.
go back to reference Tree JJ, Wilkie J (2010) Face and object imagery in congenital prosopagnosia: a case series. Cortex 46(9):1189–1198 Tree JJ, Wilkie J (2010) Face and object imagery in congenital prosopagnosia: a case series. Cortex 46(9):1189–1198
63.
go back to reference Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci 28:10056–10061PubMedCrossRef Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci 28:10056–10061PubMedCrossRef
64.
go back to reference Postle BR, Berger JS, Taich AM, D’Esposito M (2000) Activity in human frontal cortex associated with spatial working memory and saccadic behavior. J Cogn Neurosci 12(Suppl2):2–14PubMedCrossRef Postle BR, Berger JS, Taich AM, D’Esposito M (2000) Activity in human frontal cortex associated with spatial working memory and saccadic behavior. J Cogn Neurosci 12(Suppl2):2–14PubMedCrossRef
65.
go back to reference Vuilleumier P, Pourtois G (2007) Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45:174–194PubMedCrossRef Vuilleumier P, Pourtois G (2007) Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45:174–194PubMedCrossRef
66.
go back to reference Harmer CJ, Thilo KV, Rothwell JC, Goodwin GM (2001) Transcranial magnetic stimulation of medial-frontal cortex impairs the processing of angry facial expressions. Nat Neurosci 4:17–18PubMedCrossRef Harmer CJ, Thilo KV, Rothwell JC, Goodwin GM (2001) Transcranial magnetic stimulation of medial-frontal cortex impairs the processing of angry facial expressions. Nat Neurosci 4:17–18PubMedCrossRef
67.
go back to reference Keightley ML, Chiew KS, Anderson JA, Grady CL (2010) Neural correlates of recognition memory for emotional faces and scenes. Soc Cogn Affect Neurosci. doi:10.1093/scan/nsq003 Keightley ML, Chiew KS, Anderson JA, Grady CL (2010) Neural correlates of recognition memory for emotional faces and scenes. Soc Cogn Affect Neurosci. doi:10.​1093/​scan/​nsq003
Metadata
Title
Congenital prosopagnosia: multistage anatomical and functional deficits in face processing circuitry
Authors
V. Dinkelacker
M. Grüter
P. Klaver
T. Grüter
K. Specht
S. Weis
I. Kennerknecht
C. E. Elger
G. Fernandez
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
Journal of Neurology / Issue 5/2011
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-010-5828-5

Other articles of this Issue 5/2011

Journal of Neurology 5/2011 Go to the issue