Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 4/2013

01-06-2013 | Original Paper

Aripiprazole differentially regulates the expression of Gad67 and γ-aminobutyric acid transporters in rat brain

Authors: Nina Peselmann, Andrea Schmitt, Peter J. Gebicke-Haerter, Mathias Zink

Published in: European Archives of Psychiatry and Clinical Neuroscience | Issue 4/2013

Login to get access

Abstract

The molecular etiology of schizophrenia comprises abnormal neurotransmission of the amino acid GABA (γ-aminobutyric acid). Neuropathological studies convincingly revealed reduced expression of glutamic acid decarboxylase (Gad67) in GABAergic interneurons. Several antipsychotics influence the expression of GABAergic genes, but aripiprazole (APZ), a partial dopaminergic and serotonergic receptor agonist, has not been involved into these studies so far. We treated Sprague–Dawley rats for 4 weeks or 4 months with APZ suspended in drinking water and doses of 10 and 40 mg per kg body weight. Gene expression of Gad67, the vesicular GABA transporter Slc32a1 (solute carrier family, Vgat), the transmembrane transporters Slc6a1 (Gat1) and Slc6a11 (Gat3) was assessed by semiquantitative radioactive in situ hybridization. APZ treatment resulted in time- and dose-dependent effects with qualitative differences between brain regions. In the 10-mg group, Slc6a1 was strongly induced after 4 weeks in the hippocampus, amygdala, and cerebral cortex, followed by an induction of Gad67 in the same regions after 4 months, while frontocortical regions as well as basal ganglia showed dose-dependent reductions of Gad67 expression after 4 months. In several frontocortical and subcortical regions, we observed a decrease of Slc32a1 and an increase of Slc6a11 expression. In conclusion, APZ modulates gene expression of GABAergic marker genes involved into pathogenetic theories of schizophrenia. APZ only partially mirrors the effects of other antipsychotics with some important differences regarding brain regions. The findings might be explained by regulatory connections between serotonergic, GABAergic, and dopaminergic neurotransmission and should be validated in behavioral animal models of psychotic disorders.
Literature
1.
go back to reference Rolls ET, Loh M, Deco G, Winterer G (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9:696–709PubMedCrossRef Rolls ET, Loh M, Deco G, Winterer G (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9:696–709PubMedCrossRef
2.
go back to reference Benes FM (2009) Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else? Biol Psychiatry 65:1003–1005PubMedCrossRef Benes FM (2009) Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else? Biol Psychiatry 65:1003–1005PubMedCrossRef
3.
go back to reference Lopez-Gil X, Artigas F, Adell A (2010) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharmaceut Design 16:502–515CrossRef Lopez-Gil X, Artigas F, Adell A (2010) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharmaceut Design 16:502–515CrossRef
4.
go back to reference Meltzer HY, Fonnum F (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. Psychopharmacol 18:173–182 Meltzer HY, Fonnum F (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. Psychopharmacol 18:173–182
5.
go back to reference Hendry SH, Jones EG, Emson PC, Lawson DE, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 76:467–472PubMedCrossRef Hendry SH, Jones EG, Emson PC, Lawson DE, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 76:467–472PubMedCrossRef
6.
go back to reference Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res 63:461–468PubMedCrossRef Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res 63:461–468PubMedCrossRef
7.
go back to reference Gonzalez-Burgos G, Rotaru DC, Zaitsev AV, Povysheva NV, Lewis DA (2009) GABA transporter GAT1 prevents spillover at proximal and distal GABA synapses onto primate prefrontal cortex neurons. J Neurophysiol 101:533–547PubMedCrossRef Gonzalez-Burgos G, Rotaru DC, Zaitsev AV, Povysheva NV, Lewis DA (2009) GABA transporter GAT1 prevents spillover at proximal and distal GABA synapses onto primate prefrontal cortex neurons. J Neurophysiol 101:533–547PubMedCrossRef
8.
go back to reference Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH et al (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18:9733–9750PubMed Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH et al (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18:9733–9750PubMed
9.
go back to reference Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacol 25:1–27CrossRef Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacol 25:1–27CrossRef
10.
go back to reference Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324PubMedCrossRef Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324PubMedCrossRef
12.
go back to reference Gonzalez-Burgos G, Hashimoto T, Lewis DA (2010) Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep 12:335–344PubMedCrossRef Gonzalez-Burgos G, Hashimoto T, Lewis DA (2010) Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep 12:335–344PubMedCrossRef
13.
go back to reference Lewis DA (2009) Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. Dial Clin Neurosci 11:269–280 Lewis DA (2009) Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. Dial Clin Neurosci 11:269–280
14.
go back to reference Volman V, Behrens MM, Sejnowski TJ (2011) Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity. J Neurosci 31:18137–18148PubMedCrossRef Volman V, Behrens MM, Sejnowski TJ (2011) Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity. J Neurosci 31:18137–18148PubMedCrossRef
15.
go back to reference Bitanihirwe BK, Lim MP, Kelley JF, Kaneko T, Woo TU (2009) Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry 9:71PubMedCrossRef Bitanihirwe BK, Lim MP, Kelley JF, Kaneko T, Woo TU (2009) Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry 9:71PubMedCrossRef
16.
go back to reference Romon T, Mengod G, Adell A (2011) Expression of parvalbumin and glutamic acid decarboxylase-67 after acute administration of MK-801. Implications for the NMDA hypofunction model of schizophrenia. Psychopharmacol 217:231–238CrossRef Romon T, Mengod G, Adell A (2011) Expression of parvalbumin and glutamic acid decarboxylase-67 after acute administration of MK-801. Implications for the NMDA hypofunction model of schizophrenia. Psychopharmacol 217:231–238CrossRef
17.
go back to reference Braun I, Genius J, Grunze H, Bender A, Möller HJ, Rujescu D (2007) Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism. Schizophr Res 97:254–263PubMedCrossRef Braun I, Genius J, Grunze H, Bender A, Möller HJ, Rujescu D (2007) Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism. Schizophr Res 97:254–263PubMedCrossRef
18.
go back to reference Rujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H et al (2006) A pharmacological model for psychosis based on N-methyl-d-aspartate receptor hypofunction: molecular, cellular, functional and behaviorial abnormalities. Biol Psychiatry 59:721–729PubMedCrossRef Rujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H et al (2006) A pharmacological model for psychosis based on N-methyl-d-aspartate receptor hypofunction: molecular, cellular, functional and behaviorial abnormalities. Biol Psychiatry 59:721–729PubMedCrossRef
19.
go back to reference Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83PubMedCrossRef Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83PubMedCrossRef
20.
go back to reference Fitzgerald PB (2010) BL-1020, an oral antipsychotic agent that reduces dopamine activity and enhances GABAA activity, for the treatment of schizophrenia. Curr Opin Invest Drugs 11:92–100 Fitzgerald PB (2010) BL-1020, an oral antipsychotic agent that reduces dopamine activity and enhances GABAA activity, for the treatment of schizophrenia. Curr Opin Invest Drugs 11:92–100
21.
go back to reference Stan A, Lewis D (2012) Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies. Curr Pharmac Biotechnol 13:1557–1562CrossRef Stan A, Lewis D (2012) Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies. Curr Pharmac Biotechnol 13:1557–1562CrossRef
22.
go back to reference Ibrahim HM, Tamminga CA (2012) Treating impaired cognition in schizophrenia. Curr Pharmac Biotechnol 13:1587–1594CrossRef Ibrahim HM, Tamminga CA (2012) Treating impaired cognition in schizophrenia. Curr Pharmac Biotechnol 13:1587–1594CrossRef
23.
go back to reference Genius J, Giegling I, Benninghoff J, Rujescu D (2012) Disturbed function of GABAergic interneurons in schizophrenia: relevance for medical treatment? Curr Pharmac Biotechnol 13:1549–1556CrossRef Genius J, Giegling I, Benninghoff J, Rujescu D (2012) Disturbed function of GABAergic interneurons in schizophrenia: relevance for medical treatment? Curr Pharmac Biotechnol 13:1549–1556CrossRef
24.
go back to reference Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA (2008) Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry 165:479–489PubMedCrossRef Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA (2008) Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry 165:479–489PubMedCrossRef
25.
go back to reference Curley AA, Arion D, Volk DW, Asufa-Adjei JK, Sampson AR, Fish KN et al (2012) Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry 168:921–929CrossRef Curley AA, Arion D, Volk DW, Asufa-Adjei JK, Sampson AR, Fish KN et al (2012) Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry 168:921–929CrossRef
26.
go back to reference Fung SJ, Webster MJ, Weicker CS (2011) Expression of VGluT1 and VGAT mRNAs in human dorsolateral prefrontal cortex during development and in schizophrenia. Brain Res 1388:22–31PubMedCrossRef Fung SJ, Webster MJ, Weicker CS (2011) Expression of VGluT1 and VGAT mRNAs in human dorsolateral prefrontal cortex during development and in schizophrenia. Brain Res 1388:22–31PubMedCrossRef
27.
go back to reference Cruz DA, Weaver CL, Lovallo EM, Melchitzky DS, Lewis DA (2009) Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia. Neuropsychopharmacol 34:2112–2124CrossRef Cruz DA, Weaver CL, Lovallo EM, Melchitzky DS, Lewis DA (2009) Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia. Neuropsychopharmacol 34:2112–2124CrossRef
28.
go back to reference Reynolds GP, Czudek C, Andrews HB (1990) Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 27:1038–1044PubMedCrossRef Reynolds GP, Czudek C, Andrews HB (1990) Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 27:1038–1044PubMedCrossRef
29.
go back to reference Benes FM, Baretta S (2000) Amygdalo-entorhinal inputs to the hippocampla formation in relation to schizophrenia. Ann NY Acad Sci 911:293–304PubMedCrossRef Benes FM, Baretta S (2000) Amygdalo-entorhinal inputs to the hippocampla formation in relation to schizophrenia. Ann NY Acad Sci 911:293–304PubMedCrossRef
30.
go back to reference Tayoshi S, Nakataki M, Sumitani S, Taniguchi K, Shibuya-Tayoshi S, Numata S et al (2010) GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 117:83–91PubMedCrossRef Tayoshi S, Nakataki M, Sumitani S, Taniguchi K, Shibuya-Tayoshi S, Numata S et al (2010) GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 117:83–91PubMedCrossRef
31.
go back to reference Perry TL, Hansen S, Kish SJ (1979) Effects of chronic administration of antipsychotic drugs on GABA and other amino acids in the mesolimbic area of rat brain. Life Sci 24:283–288PubMedCrossRef Perry TL, Hansen S, Kish SJ (1979) Effects of chronic administration of antipsychotic drugs on GABA and other amino acids in the mesolimbic area of rat brain. Life Sci 24:283–288PubMedCrossRef
32.
go back to reference Hashimoto T, Arion D, Unger T, Maldonado A, Morris HM, Volk DW et al (2008) Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 13:147–161PubMedCrossRef Hashimoto T, Arion D, Unger T, Maldonado A, Morris HM, Volk DW et al (2008) Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 13:147–161PubMedCrossRef
33.
go back to reference Gunne LM, Haggstrom JE, Sjoquist B (1984) Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis. Nature 309:347–349PubMedCrossRef Gunne LM, Haggstrom JE, Sjoquist B (1984) Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis. Nature 309:347–349PubMedCrossRef
34.
go back to reference Delfs JM, Ellison GD, Mercugliano M, Chesselet MF (1995) Expression of glutamic acid decarboxylase mRNA in striatum and pallidum in an animal model of tardive dyskinesia. Exp Neurol 133:175–188PubMedCrossRef Delfs JM, Ellison GD, Mercugliano M, Chesselet MF (1995) Expression of glutamic acid decarboxylase mRNA in striatum and pallidum in an animal model of tardive dyskinesia. Exp Neurol 133:175–188PubMedCrossRef
35.
go back to reference Jolkkonen J, Jenner P, Marsden CD (1994) GABAergic modulation of striatal peptide expression in rats and the alterations induced by dopamine antagonist treatment. Neurosci Lett 180:273–276PubMedCrossRef Jolkkonen J, Jenner P, Marsden CD (1994) GABAergic modulation of striatal peptide expression in rats and the alterations induced by dopamine antagonist treatment. Neurosci Lett 180:273–276PubMedCrossRef
36.
go back to reference Delfs JM, Anegawa NJ, Chesselet MF (1995) Glutamate decarboxylase messenger RNA in rat pallidum: comparison of the effects of haloperidol, clozapine and combined haloperidol-scopolamine treatments. Neurosci 66:67–80CrossRef Delfs JM, Anegawa NJ, Chesselet MF (1995) Glutamate decarboxylase messenger RNA in rat pallidum: comparison of the effects of haloperidol, clozapine and combined haloperidol-scopolamine treatments. Neurosci 66:67–80CrossRef
37.
go back to reference Laprade N, Soghomonian JJ (1995) Differential regulation of mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) by dopamine receptors in the rat striatum. Mol Brain Res 34:65–74PubMedCrossRef Laprade N, Soghomonian JJ (1995) Differential regulation of mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) by dopamine receptors in the rat striatum. Mol Brain Res 34:65–74PubMedCrossRef
38.
go back to reference Sakai K, Gao XM, Hashimoto T, Tamminga CA (2001) Traditional and new antipsychotic drugs differentially alter neurotransmission markers in basal ganglia-thalamocortical neural pathways. Synapse 39:152–160PubMedCrossRef Sakai K, Gao XM, Hashimoto T, Tamminga CA (2001) Traditional and new antipsychotic drugs differentially alter neurotransmission markers in basal ganglia-thalamocortical neural pathways. Synapse 39:152–160PubMedCrossRef
39.
go back to reference Zink M, Schmitt A, May B, Müller B, Demirakca T, Braus DF et al (2004) Differential effects of long-term treatment with clozapine of haloperidol on GABAa receptor binding and GAD67 expression. Schizophr Res 66:151–157PubMedCrossRef Zink M, Schmitt A, May B, Müller B, Demirakca T, Braus DF et al (2004) Differential effects of long-term treatment with clozapine of haloperidol on GABAa receptor binding and GAD67 expression. Schizophr Res 66:151–157PubMedCrossRef
40.
go back to reference Chen JF, Weiss B (1993) Irreversible blockade of D2 dopamine receptors by fluphenazine-N- mustard increases glutamic acid decarboxylase mRNA in rat striatum. Neurosci Lett 150:215–218PubMedCrossRef Chen JF, Weiss B (1993) Irreversible blockade of D2 dopamine receptors by fluphenazine-N- mustard increases glutamic acid decarboxylase mRNA in rat striatum. Neurosci Lett 150:215–218PubMedCrossRef
41.
go back to reference Johnson AE, Liminga U, Liden A, Lindefors N, Gunne LM, Wiesel FA (1994) Chronic treatment with a classical neuroleptic alters excitatory amino acid and GABAergic neurotransmission in specific regions of the rat brain. Neurosci 63:1003–1020CrossRef Johnson AE, Liminga U, Liden A, Lindefors N, Gunne LM, Wiesel FA (1994) Chronic treatment with a classical neuroleptic alters excitatory amino acid and GABAergic neurotransmission in specific regions of the rat brain. Neurosci 63:1003–1020CrossRef
42.
go back to reference Daskalakis ZJ, George TP (2009) Clozapine, GABA(B), and the treatment of resistant schizophrenia. Clin Pharmacol Therap 86:442–446CrossRef Daskalakis ZJ, George TP (2009) Clozapine, GABA(B), and the treatment of resistant schizophrenia. Clin Pharmacol Therap 86:442–446CrossRef
43.
go back to reference Farnbach-Pralong D, Bradbury R, Copolov D, Dean B (1998) Clozapine and olanzapine treatment decreases rat cortical and limbic GABA(A) receptors. Eur J Pharmacol 349:R7–R8PubMedCrossRef Farnbach-Pralong D, Bradbury R, Copolov D, Dean B (1998) Clozapine and olanzapine treatment decreases rat cortical and limbic GABA(A) receptors. Eur J Pharmacol 349:R7–R8PubMedCrossRef
44.
go back to reference Amitai N, Kuczenski R, Behrens MM, Markou A (2012) Repeated phencyclidine administration alters glutamate release and decreases GABA markers in the prefrontal cortex of rats. Neuropharmacol 62:1422–1431CrossRef Amitai N, Kuczenski R, Behrens MM, Markou A (2012) Repeated phencyclidine administration alters glutamate release and decreases GABA markers in the prefrontal cortex of rats. Neuropharmacol 62:1422–1431CrossRef
45.
go back to reference Zink M, Schmitt A, May B, Müller B, Braus DF, Henn FA (2004) Differential effects of long-term treatment with clozapine or haloperidol on GABA-transporter expression. Pharmacopsychiatry 37:171–174PubMedCrossRef Zink M, Schmitt A, May B, Müller B, Braus DF, Henn FA (2004) Differential effects of long-term treatment with clozapine or haloperidol on GABA-transporter expression. Pharmacopsychiatry 37:171–174PubMedCrossRef
46.
go back to reference Yamamura S, Ohoyama K, Hamaguchi T, Kashimoto K, Nakagawa M, Kanehara S et al (2009) Effects of quetiapine on monoamine, GABA, and glutamate release in rat prefrontal cortex. Psychopharmacol 206:243–258CrossRef Yamamura S, Ohoyama K, Hamaguchi T, Kashimoto K, Nakagawa M, Kanehara S et al (2009) Effects of quetiapine on monoamine, GABA, and glutamate release in rat prefrontal cortex. Psychopharmacol 206:243–258CrossRef
47.
go back to reference Ohoyama K, Yamamura S, Hamaguchi T, Nakagawa M, Motomura E, Shiroyama T et al (2011) Effect of novel atypical antipsychotic, blonanserin, on extracellular neurotransmitter level in rat prefrontal cortex. Eur J Pharmacol 653:47–57PubMedCrossRef Ohoyama K, Yamamura S, Hamaguchi T, Nakagawa M, Motomura E, Shiroyama T et al (2011) Effect of novel atypical antipsychotic, blonanserin, on extracellular neurotransmitter level in rat prefrontal cortex. Eur J Pharmacol 653:47–57PubMedCrossRef
48.
go back to reference Yamamura S, Ohoyama K, Hamaguchi T, Nakagawa M, Suzuki D, Matsumoto T et al (2009) Effects of zotepine on extracellular levels of monoamine, GABA and glutamate in rat prefrontal cortex. Br J Pharmacol 157:656–665PubMedCrossRef Yamamura S, Ohoyama K, Hamaguchi T, Nakagawa M, Suzuki D, Matsumoto T et al (2009) Effects of zotepine on extracellular levels of monoamine, GABA and glutamate in rat prefrontal cortex. Br J Pharmacol 157:656–665PubMedCrossRef
49.
go back to reference Goto N, Yoshimura R, Kakeda S, Moriya J, Hayashi K, Ikenouchi-Sugita A et al (2009) Associations between plasma levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) and negative symptoms or cognitive impairments in early-stage schizophrenia. Hum Psychopharmacol 24:639–645PubMedCrossRef Goto N, Yoshimura R, Kakeda S, Moriya J, Hayashi K, Ikenouchi-Sugita A et al (2009) Associations between plasma levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) and negative symptoms or cognitive impairments in early-stage schizophrenia. Hum Psychopharmacol 24:639–645PubMedCrossRef
50.
go back to reference Goto N, Yoshimura R, Moriya J, Kakeda S, Ueda N, Ikenouchi-Sugita A et al (2009) Reduction of brain [gamma]-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T Proton MRS study. Schizophr Res 112:192–193PubMedCrossRef Goto N, Yoshimura R, Moriya J, Kakeda S, Ueda N, Ikenouchi-Sugita A et al (2009) Reduction of brain [gamma]-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T Proton MRS study. Schizophr Res 112:192–193PubMedCrossRef
51.
go back to reference Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X et al (2012) Elevated prefrontal cortex gamma¦-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 69:449–459PubMedCrossRef Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X et al (2012) Elevated prefrontal cortex gamma¦-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 69:449–459PubMedCrossRef
52.
go back to reference Natesan S, Reckless GE, Barlow KBL, Nobrega JN, Kapur S (2011) Partial agonists in schizophrenia—why some work and others do not: insights from preclinical animal models. Int J Neuropsychopharmacol 14:1165–1178PubMedCrossRef Natesan S, Reckless GE, Barlow KBL, Nobrega JN, Kapur S (2011) Partial agonists in schizophrenia—why some work and others do not: insights from preclinical animal models. Int J Neuropsychopharmacol 14:1165–1178PubMedCrossRef
53.
go back to reference Bortolozzi A, az-Mataix L, Toth M, Celada P, Artigas F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacol 191:745–758CrossRef Bortolozzi A, az-Mataix L, Toth M, Celada P, Artigas F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacol 191:745–758CrossRef
54.
go back to reference Sparshatt A, Taylor D, Patel MX, Kapur S (2010) A systematic review of aripiprazole–dose, plasma concentration, receptor occupancy, and response: implications for therapeutic drug monitoring. J Clin Psychiatry 71:1447–1456PubMedCrossRef Sparshatt A, Taylor D, Patel MX, Kapur S (2010) A systematic review of aripiprazole–dose, plasma concentration, receptor occupancy, and response: implications for therapeutic drug monitoring. J Clin Psychiatry 71:1447–1456PubMedCrossRef
55.
go back to reference Kern RS, Green MF, Cornblatt BA, Owen JR, McQuade RD, Carson WH et al (2006) The neurocognitive effects of aripiprazole: an open-label comparison with olanzapine. Psychopharmacol 187:312–320CrossRef Kern RS, Green MF, Cornblatt BA, Owen JR, McQuade RD, Carson WH et al (2006) The neurocognitive effects of aripiprazole: an open-label comparison with olanzapine. Psychopharmacol 187:312–320CrossRef
56.
go back to reference Hamamura T, Harada T (2007) Unique pharmacological profile of aripiprazole as the phasic component buster. [erratum appears in Psychopharmacology (Berl). 2007 Apr; 191(3):855]. Psychopharmacol 191:741–743CrossRef Hamamura T, Harada T (2007) Unique pharmacological profile of aripiprazole as the phasic component buster. [erratum appears in Psychopharmacology (Berl). 2007 Apr; 191(3):855]. Psychopharmacol 191:741–743CrossRef
57.
go back to reference Han M, Huang XF, Deng C (2009) Aripiprazole differentially affects mesolimbic and nigrostriatal dopaminergic transmission: implications for long-term drug efficacy and low extrapyramidal side-effects. Int J Neuropsychopharmacol. doi:10.1017/s1461145709009948 Han M, Huang XF, Deng C (2009) Aripiprazole differentially affects mesolimbic and nigrostriatal dopaminergic transmission: implications for long-term drug efficacy and low extrapyramidal side-effects. Int J Neuropsychopharmacol. doi:10.​1017/​s146114570900994​8
58.
go back to reference Koprivica V, Regardie K, Wolff C, Fernalld R, Murphy JJ, Kambayashi J et al (2011) Aripiprazole protects cortical neurons from glutamate toxicity. Eur J Pharmacol 651:73–76PubMedCrossRef Koprivica V, Regardie K, Wolff C, Fernalld R, Murphy JJ, Kambayashi J et al (2011) Aripiprazole protects cortical neurons from glutamate toxicity. Eur J Pharmacol 651:73–76PubMedCrossRef
59.
go back to reference Cheng MC, Liao D-L, Hsiung C-A, Chen C-Y, Liao Y-C, Chen C-H (2008) Chronic treatment with aripiprazole induces differential gene expression in the rat frontal cortex. Int J Neuropsychopharmacol 11:207–216PubMedCrossRef Cheng MC, Liao D-L, Hsiung C-A, Chen C-Y, Liao Y-C, Chen C-H (2008) Chronic treatment with aripiprazole induces differential gene expression in the rat frontal cortex. Int J Neuropsychopharmacol 11:207–216PubMedCrossRef
60.
go back to reference Segnitz N, Schmitt A, Gebicke-Härter P, Zink M (2009) Differential expression of glutamate transporter genes after chronic oral treatment with aripiprazole in rats. Neurochem Int 55:619–628PubMedCrossRef Segnitz N, Schmitt A, Gebicke-Härter P, Zink M (2009) Differential expression of glutamate transporter genes after chronic oral treatment with aripiprazole in rats. Neurochem Int 55:619–628PubMedCrossRef
61.
go back to reference Segnitz N, Ferbert T, Schmitt A, Gass P, Gebicke-Härter P, Zink M (2011) Effects of chronic oral treatment with aripiprazole on the expression of NMDA receptor subunits and binding sites in rat brain. Psychopharmacol 217:127–142CrossRef Segnitz N, Ferbert T, Schmitt A, Gass P, Gebicke-Härter P, Zink M (2011) Effects of chronic oral treatment with aripiprazole on the expression of NMDA receptor subunits and binding sites in rat brain. Psychopharmacol 217:127–142CrossRef
62.
go back to reference Llado-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P (2012) 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex 22:1487–1497PubMedCrossRef Llado-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P (2012) 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex 22:1487–1497PubMedCrossRef
63.
go back to reference Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press inc, San Diego Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press inc, San Diego
64.
go back to reference Zink M, Vollmayr B, Gebicke-Härter P, Henn FA (2009) Reduced expression of GABA transporter GAT3 in helpless rats, an animal model of depression. Neurochem Res 34:1584–1593PubMedCrossRef Zink M, Vollmayr B, Gebicke-Härter P, Henn FA (2009) Reduced expression of GABA transporter GAT3 in helpless rats, an animal model of depression. Neurochem Res 34:1584–1593PubMedCrossRef
65.
go back to reference Van Eden CG, Rinkens A, Uylings HB (1998) Retrograde degeneration of thalamic neurons in the mediodorsal nucleus after neonatal and adult aspiration lesions of the medial prefrontal cortex in the rat. Implications for mechanisms of functional recovery. Eur J Neurosci 10:1581–1589PubMedCrossRef Van Eden CG, Rinkens A, Uylings HB (1998) Retrograde degeneration of thalamic neurons in the mediodorsal nucleus after neonatal and adult aspiration lesions of the medial prefrontal cortex in the rat. Implications for mechanisms of functional recovery. Eur J Neurosci 10:1581–1589PubMedCrossRef
66.
go back to reference Van Eden CG, van HA, van HF, Uylings HB (1994) Effects of neonatal mediodorsal thalamic lesions on structure and function of the rat prefrontal cortex. Dev Brain Res 80:26–34CrossRef Van Eden CG, van HA, van HF, Uylings HB (1994) Effects of neonatal mediodorsal thalamic lesions on structure and function of the rat prefrontal cortex. Dev Brain Res 80:26–34CrossRef
67.
go back to reference Van Eden CG, Kros JM, Uylings HB (1990) The development of the rat prefrontal cortex. Its size and development of connections with thalamus, spinal cord and other cortical areas. Progr Brain Res 85:169–183CrossRef Van Eden CG, Kros JM, Uylings HB (1990) The development of the rat prefrontal cortex. Its size and development of connections with thalamus, spinal cord and other cortical areas. Progr Brain Res 85:169–183CrossRef
68.
go back to reference Uylings HB, Van Eden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Progr Brain Res 85:31–62CrossRef Uylings HB, Van Eden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Progr Brain Res 85:31–62CrossRef
69.
go back to reference Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, bi-Dargham A et al. (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment: a meta-analysis of imaging studies. Arch Gen Psychiatry 69(8):776–786 Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, bi-Dargham A et al. (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment: a meta-analysis of imaging studies. Arch Gen Psychiatry 69(8):776–786
70.
go back to reference Correll CU (2012) Assessing and maximizing the safety and tolerability of antipsychotics used in the treatment of children and adolescent. J Clin Psychiatry 69:26–36 Correll CU (2012) Assessing and maximizing the safety and tolerability of antipsychotics used in the treatment of children and adolescent. J Clin Psychiatry 69:26–36
71.
go back to reference de Almeida J, Mengod G (2008) Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochemistry 107:488–496CrossRef de Almeida J, Mengod G (2008) Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochemistry 107:488–496CrossRef
72.
go back to reference Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15:1–14PubMedCrossRef Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15:1–14PubMedCrossRef
73.
go back to reference Williams M, Hampton T, Pearce R, Hirsch S, Ansorge O, Thom M et al. (2012) Astrocyte decrease in the subgenual cingulate and callosal genu in schizophrenia. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-012-0328-50 Williams M, Hampton T, Pearce R, Hirsch S, Ansorge O, Thom M et al. (2012) Astrocyte decrease in the subgenual cingulate and callosal genu in schizophrenia. Eur Arch Psychiatry Clin Neurosci. doi:10.​1007/​s00406-012-0328-50
74.
go back to reference Schmitt A, Leonardi-Essmann F, Durrenberger P, Wichert S, Spanagel R, Arzberger T et al. (2012) Structural synaptic elements are differentially regulated in superior temporal cortex of schizophrenia patients. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-012-0306-y Schmitt A, Leonardi-Essmann F, Durrenberger P, Wichert S, Spanagel R, Arzberger T et al. (2012) Structural synaptic elements are differentially regulated in superior temporal cortex of schizophrenia patients. Eur Arch Psychiatry Clin Neurosci. doi:10.​1007/​s00406-012-0306-y
75.
76.
go back to reference Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15:2453–2461PubMed Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15:2453–2461PubMed
77.
go back to reference Carli M, Calcagno E, Mainolfi P, Mainini E, Invernizzi RW (2012) Effects of aripiprazole, olanzapine, and haloperidol in a model of cognitive deficit of schizophrenia in rats: relationship with glutamate release in the medial prefrontal cortex. Pharmacopsychiatry 214:639–652 Carli M, Calcagno E, Mainolfi P, Mainini E, Invernizzi RW (2012) Effects of aripiprazole, olanzapine, and haloperidol in a model of cognitive deficit of schizophrenia in rats: relationship with glutamate release in the medial prefrontal cortex. Pharmacopsychiatry 214:639–652
78.
go back to reference Fell MJ, Katner JS, Rasmussen K, Nikolayev A, Kuo M-S, Nelson DLG et al (2012) Typical and atypical antipsychotic drugs increase extracellular histamine levels in the rat medial prefrontal cortex: contribution of Histamine H1 receptor blockade. Frontiers Psychiatry 3:49. doi:10.3389/fpsyt.2012.00049 Fell MJ, Katner JS, Rasmussen K, Nikolayev A, Kuo M-S, Nelson DLG et al (2012) Typical and atypical antipsychotic drugs increase extracellular histamine levels in the rat medial prefrontal cortex: contribution of Histamine H1 receptor blockade. Frontiers Psychiatry 3:49. doi:10.​3389/​fpsyt.​2012.​00049
79.
go back to reference Skrede S, Ferno J, Vazquez MJ, Fjaer S, Pavlin T, Lunder N et al (2012) Olanzapine, but not aripiprazole, weight-independently elevates serum triglycerides and activates lipogenic gene expression in female rats. Int J Neuropsychopharmacol 15:163–179PubMedCrossRef Skrede S, Ferno J, Vazquez MJ, Fjaer S, Pavlin T, Lunder N et al (2012) Olanzapine, but not aripiprazole, weight-independently elevates serum triglycerides and activates lipogenic gene expression in female rats. Int J Neuropsychopharmacol 15:163–179PubMedCrossRef
Metadata
Title
Aripiprazole differentially regulates the expression of Gad67 and γ-aminobutyric acid transporters in rat brain
Authors
Nina Peselmann
Andrea Schmitt
Peter J. Gebicke-Haerter
Mathias Zink
Publication date
01-06-2013
Publisher
Springer-Verlag
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue 4/2013
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-012-0367-y

Other articles of this Issue 4/2013

European Archives of Psychiatry and Clinical Neuroscience 4/2013 Go to the issue