Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 2/2012

Open Access 01-02-2012 | Head and Neck

Novel composite implant in craniofacial bone reconstruction

Authors: Matti J. Peltola, Pekka K. Vallittu, Ville Vuorinen, Allan A. J. Aho, Antti Puntala, Kalle M. J. Aitasalo

Published in: European Archives of Oto-Rhino-Laryngology | Issue 2/2012

Login to get access

Abstract

Bioactive glass (BAG) and polymethyl methacrylate (PMMA) have been used in clinical applications. Antimicrobial BAG has the ability to attach chemically to surrounding bone, but it is not possible to bend, drill or shape BAG during the operation. PMMA has advantages in terms of shaping during the operation, but it does not attach chemically to the bone and is an exothermic material. To increase the usefulness of BAG and PMMA in skull bone defect reconstructions, a new composite implant containing BAG and PMMA in craniofacial reconstructions is presented. Three patients had pre-existing large defects in the calvarial and one in the midface area. An additive manufacturing (AM) model was used preoperatively for treatment planning and custom-made implant production. The trunk of the PMMA implant was coated with BAG granules. Clinical and radiological follow-up was performed postoperatively at 1 week, and 3, 6 and 12 months, and thereafter annually up to 5 years. Computer tomography (CT) and positron emission tomography (PET-CT) were performed at 12 and 24 months postoperatively. Uneventful clinical recovery with good esthetic and functional outcome was seen. CT and PET-CT findings supported good clinical outcome. The BAG–PMMA implant seems to be a promising craniofacial reconstruction alternative. However, more clinical experience is needed.
Literature
1.
go back to reference Tessier P, Kawamoto H, Matthews D et al (2005) Autogenous bone grafts and bone substitute—tools and techniques: I A 20000-case experience in maxillofacial and craniofacial surgery. Plast Reconstr Surg Suppl 5:6–24CrossRef Tessier P, Kawamoto H, Matthews D et al (2005) Autogenous bone grafts and bone substitute—tools and techniques: I A 20000-case experience in maxillofacial and craniofacial surgery. Plast Reconstr Surg Suppl 5:6–24CrossRef
2.
go back to reference Lenz JH, Henkel KO, Hingst V, von Versen R, Gundlach K (2003) Reconstruction of the frontal calvarial continuity in a child using freeze-preserved autogenous bone grafts. J Craniomaxillofac Surg 3:154–158CrossRef Lenz JH, Henkel KO, Hingst V, von Versen R, Gundlach K (2003) Reconstruction of the frontal calvarial continuity in a child using freeze-preserved autogenous bone grafts. J Craniomaxillofac Surg 3:154–158CrossRef
3.
go back to reference Rodrigues M, O`Malley BW Jr, Staecker H, Tamargo R (2004) Extended pericranial flap and bone graft reconstruction in anterior skull base surgery. Otolaryngol Head Neck Surg 1:69–76CrossRef Rodrigues M, O`Malley BW Jr, Staecker H, Tamargo R (2004) Extended pericranial flap and bone graft reconstruction in anterior skull base surgery. Otolaryngol Head Neck Surg 1:69–76CrossRef
4.
go back to reference Ahlmann E, Patzakis M, Roidis N et al (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am 5:716–720 Ahlmann E, Patzakis M, Roidis N et al (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am 5:716–720
6.
go back to reference Winder J, Cooke RS, Gray J et al (1999) Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol 1:26–28CrossRef Winder J, Cooke RS, Gray J et al (1999) Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol 1:26–28CrossRef
7.
go back to reference Ducic Y (2002) Titanium mesh and hydroxyapatite cement cranioplasty: a report of 20 cases. J Oral Maxillofac Surg 3:272–276CrossRef Ducic Y (2002) Titanium mesh and hydroxyapatite cement cranioplasty: a report of 20 cases. J Oral Maxillofac Surg 3:272–276CrossRef
8.
go back to reference Moreira-Gonzalez A, Jackson IT, Miyawaki T et al (2003) Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg 5:144–153CrossRef Moreira-Gonzalez A, Jackson IT, Miyawaki T et al (2003) Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg 5:144–153CrossRef
9.
go back to reference Kveton JF, Coelho DH (2004) Hydroxyapatite cement in temporal bone surgery: a 10 year experience. Laryngoscope 1:33–37CrossRef Kveton JF, Coelho DH (2004) Hydroxyapatite cement in temporal bone surgery: a 10 year experience. Laryngoscope 1:33–37CrossRef
10.
go back to reference Mankovich NJ, Samson D, Pratt W et al (2005) Surgical planning using three-dimensional imaging and computer modeling. Otolaryngol Clin North Am 5:875–879 Mankovich NJ, Samson D, Pratt W et al (2005) Surgical planning using three-dimensional imaging and computer modeling. Otolaryngol Clin North Am 5:875–879
11.
go back to reference Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015PubMedCrossRef Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015PubMedCrossRef
12.
go back to reference Suzuki M, Ogawa Y, Kawano A et al (2004) Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 4:400–402CrossRef Suzuki M, Ogawa Y, Kawano A et al (2004) Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 4:400–402CrossRef
13.
go back to reference Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 4:571–577 Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 4:571–577
14.
go back to reference Eppley BL, Kilgo M, Coleman JJ III (2002) Cranial reconstruction with computer-generated hard-tissue replacement patient-matched implants: indications, surgical technique, and long-term follow-up. Plast Reconstr Surg 109:864–871PubMedCrossRef Eppley BL, Kilgo M, Coleman JJ III (2002) Cranial reconstruction with computer-generated hard-tissue replacement patient-matched implants: indications, surgical technique, and long-term follow-up. Plast Reconstr Surg 109:864–871PubMedCrossRef
15.
go back to reference Stelnicki EJ, Ousterhout DK (1996) Prevention of thermal injury induced by the application of polymethylmetacrylate to the calvarium. J Craniofac Surg 7:192–195PubMedCrossRef Stelnicki EJ, Ousterhout DK (1996) Prevention of thermal injury induced by the application of polymethylmetacrylate to the calvarium. J Craniofac Surg 7:192–195PubMedCrossRef
16.
go back to reference Peltola M, Aitasalo K, Suonpää J et al (2006) Bioactive glass S53P4 in frontal sinus obliteration: a long-term clinical experience. Head Neck 28:834–841PubMedCrossRef Peltola M, Aitasalo K, Suonpää J et al (2006) Bioactive glass S53P4 in frontal sinus obliteration: a long-term clinical experience. Head Neck 28:834–841PubMedCrossRef
17.
go back to reference Turunen T, Peltola J, Yli-Urpo A et al (2004) Bioactive glass granules as a bone adjunctive material in maxillary sinus floor augmentation. Clin Oral Implants Res 2:135–141CrossRef Turunen T, Peltola J, Yli-Urpo A et al (2004) Bioactive glass granules as a bone adjunctive material in maxillary sinus floor augmentation. Clin Oral Implants Res 2:135–141CrossRef
18.
go back to reference Lindfors NC, Heikkilä JT, Koski I, Mattila K, Aho AJ et al (2009) Bioactive glass and autogenous bone as a bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater 90:131–136PubMed Lindfors NC, Heikkilä JT, Koski I, Mattila K, Aho AJ et al (2009) Bioactive glass and autogenous bone as a bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater 90:131–136PubMed
19.
go back to reference Leppäranta O, Vaahtio M, Peltola T et al (2008) Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med. 19:547–551PubMedCrossRef Leppäranta O, Vaahtio M, Peltola T et al (2008) Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med. 19:547–551PubMedCrossRef
20.
go back to reference Munukka E, Leppäranta O, Korkeamäki M et al (2008) Bactericidial effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med. 19:27–32PubMedCrossRef Munukka E, Leppäranta O, Korkeamäki M et al (2008) Bactericidial effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med. 19:27–32PubMedCrossRef
21.
go back to reference Hulbert SF, Young FA, Mathews RS et al (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456PubMedCrossRef Hulbert SF, Young FA, Mathews RS et al (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456PubMedCrossRef
22.
go back to reference Klawitter JJ, Bagwell JG, Weinstein AM, Sauer BW (1976) An evaluation of bone ingrowth into porous high density polyethylene. J Biomed Mater Res 10:311–319PubMedCrossRef Klawitter JJ, Bagwell JG, Weinstein AM, Sauer BW (1976) An evaluation of bone ingrowth into porous high density polyethylene. J Biomed Mater Res 10:311–319PubMedCrossRef
23.
go back to reference Vallittu PK, Ruyter IE, Buykuilmaz S (1998) Polymerization time and temperature effects the residual monomer content of denture base polymers. Eur J Oral Sci 106:588–593PubMedCrossRef Vallittu PK, Ruyter IE, Buykuilmaz S (1998) Polymerization time and temperature effects the residual monomer content of denture base polymers. Eur J Oral Sci 106:588–593PubMedCrossRef
24.
go back to reference Viljanen EK, Skrifvars M, Vallittu PK (2004) Degree of conversion of an experimental monomer and methyl methacrylate copolymer for dental applications. J Appl Polym Sci 93:1908–1912CrossRef Viljanen EK, Skrifvars M, Vallittu PK (2004) Degree of conversion of an experimental monomer and methyl methacrylate copolymer for dental applications. J Appl Polym Sci 93:1908–1912CrossRef
25.
go back to reference Hsu W, Feeley BT, Krenek L et al (2007) The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model. Eur J Nucl Med Mol Imaging 34:1291–1301PubMedCrossRef Hsu W, Feeley BT, Krenek L et al (2007) The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model. Eur J Nucl Med Mol Imaging 34:1291–1301PubMedCrossRef
26.
go back to reference Ullmark G, Sörensen J, Nilsson O (2009) Bone healing of severe acetabular defects after revision arthroplasty. Acta Orthop 80:170–183 Ullmark G, Sörensen J, Nilsson O (2009) Bone healing of severe acetabular defects after revision arthroplasty. Acta Orthop 80:170–183
27.
go back to reference Heikkilä JT, Aho AJ, Kangasniemi I et al (1996) Polymethylmetacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxylapatite. Biomaterials 18:1755–1760CrossRef Heikkilä JT, Aho AJ, Kangasniemi I et al (1996) Polymethylmetacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxylapatite. Biomaterials 18:1755–1760CrossRef
28.
go back to reference Saha S, Pal S (1984) Mechanical properties of bone cement: a review. J Biomed Mater Res 18:435–462PubMedCrossRef Saha S, Pal S (1984) Mechanical properties of bone cement: a review. J Biomed Mater Res 18:435–462PubMedCrossRef
29.
go back to reference Ginebra MP, Gil FX, Plaanell JA et al (1996) Relationship between morphology of PMMA particles and properties of acrylic bone cements. J Mater Sci Mater Med 7:375–379CrossRef Ginebra MP, Gil FX, Plaanell JA et al (1996) Relationship between morphology of PMMA particles and properties of acrylic bone cements. J Mater Sci Mater Med 7:375–379CrossRef
30.
go back to reference Vallittu PK, Miettinen V, Alakuijala P (1995) Residual monomer content and release into water of denture polymethyl methacrylate. Dent Mater 11:338–342PubMedCrossRef Vallittu PK, Miettinen V, Alakuijala P (1995) Residual monomer content and release into water of denture polymethyl methacrylate. Dent Mater 11:338–342PubMedCrossRef
Metadata
Title
Novel composite implant in craniofacial bone reconstruction
Authors
Matti J. Peltola
Pekka K. Vallittu
Ville Vuorinen
Allan A. J. Aho
Antti Puntala
Kalle M. J. Aitasalo
Publication date
01-02-2012
Publisher
Springer-Verlag
Published in
European Archives of Oto-Rhino-Laryngology / Issue 2/2012
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-011-1607-x

Other articles of this Issue 2/2012

European Archives of Oto-Rhino-Laryngology 2/2012 Go to the issue