Skip to main content
Top
Published in: Archives of Dermatological Research 4/2011

01-05-2011 | Original Paper

Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal–epidermal junction in human skin

Authors: Shunsuke Iriyama, Yukiko Matsunaga, Kazuhiro Takahashi, Kyoichi Matsuzaki, Norio Kumagai, Satoshi Amano

Published in: Archives of Dermatological Research | Issue 4/2011

Login to get access

Abstract

Recently, we reported that heparanase plays important roles in barrier-disrupted skin, leading to increased interaction of growth factors between epidermis and dermis and facilitating various cutaneous changes, including epidermal hyperplasia and wrinkle formation. However, the role of heparanase in sun-exposed skin remains unknown. Here, we show that heparanase in human keratinocytes is activated by ultraviolet B (UVB) exposure and that heparan sulfate of perlecan is markedly degraded in UVB-irradiated human skin. The degradation of heparan sulfate resulted in a marked reduction of binding activity of the basement membrane for vascular endothelial growth factor, fibroblast growth factor-2 and -7 at the dermal–epidermal junction. Degradation of heparan sulfate was observed not only in acutely UVB-irradiated skin, but also in skin chronically exposed to sun. Interestingly, heparan sulfate was found to be degraded in sun-exposed skin, but not in sun-protected skin. These findings suggest that chronic UVB exposure activates heparanase, leading to degradation of heparan sulfate in the basement membrane and increased growth factor interaction between epidermis and dermis. These changes may facilitate photo-aging.
Literature
1.
go back to reference Abboud-Jarrous G, Atzmon R, Peretz T, Palermo C, Gadea BB, Joyce JA, Vlodavsky I (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283(26):18167–18176PubMedCrossRef Abboud-Jarrous G, Atzmon R, Peretz T, Palermo C, Gadea BB, Joyce JA, Vlodavsky I (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283(26):18167–18176PubMedCrossRef
2.
go back to reference Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279(13):12346–12354PubMedCrossRef Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279(13):12346–12354PubMedCrossRef
3.
go back to reference Behzad F, Brenchley PE (2003) A multiwell format assay for heparanase. Anal Biochem 320(2):207–213PubMedCrossRef Behzad F, Brenchley PE (2003) A multiwell format assay for heparanase. Anal Biochem 320(2):207–213PubMedCrossRef
4.
go back to reference Bernard D, Mehul B, Delattre C, Simonetti L, Thomas-Collignon A, Schmidt R (2001) Purification and characterization of the endoglycosidase heparanase 1 from human plantar stratum corneum: a key enzyme in epidermal physiology? J Investig Dermatol 117(5):1266–1273PubMedCrossRef Bernard D, Mehul B, Delattre C, Simonetti L, Thomas-Collignon A, Schmidt R (2001) Purification and characterization of the endoglycosidase heparanase 1 from human plantar stratum corneum: a key enzyme in epidermal physiology? J Investig Dermatol 117(5):1266–1273PubMedCrossRef
5.
go back to reference Campbell EJ, Owen CA (2007) The sulfate groups of chondroitin sulfate- and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G. J Biol Chem 282(19):14645–14654PubMedCrossRef Campbell EJ, Owen CA (2007) The sulfate groups of chondroitin sulfate- and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G. J Biol Chem 282(19):14645–14654PubMedCrossRef
6.
go back to reference Chung JH, Yano K, Lee MK, Youn CS, Seo JY, Kim KH, Cho KH, Eun HC, Detmar M (2002) Differential effects of photoaging vs intrinsic aging on the vascularization of human skin. Arch Dermatol 138(11):1437–1442PubMedCrossRef Chung JH, Yano K, Lee MK, Youn CS, Seo JY, Kim KH, Cho KH, Eun HC, Detmar M (2002) Differential effects of photoaging vs intrinsic aging on the vascularization of human skin. Arch Dermatol 138(11):1437–1442PubMedCrossRef
7.
go back to reference Detmar M, Yeo KT, Nagy JA, Van de Water L, Brown LF, Berse B, Elicker BM, Ledbetter S, Dvorak HF (1995) Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Investig Dermatol 105(1):44–50PubMedCrossRef Detmar M, Yeo KT, Nagy JA, Van de Water L, Brown LF, Berse B, Elicker BM, Ledbetter S, Dvorak HF (1995) Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Investig Dermatol 105(1):44–50PubMedCrossRef
8.
go back to reference Elkin M, Ilan N, Ishai-Michaeli R, Friedmann Y, Papo O, Pecker I, Vlodavsky I (2001) Heparanase as mediator of angiogenesis: mode of action. Faseb J 15(9):1661–1663PubMed Elkin M, Ilan N, Ishai-Michaeli R, Friedmann Y, Papo O, Pecker I, Vlodavsky I (2001) Heparanase as mediator of angiogenesis: mode of action. Faseb J 15(9):1661–1663PubMed
9.
go back to reference Freeman C, Liu L, Banwell MG, Brown KJ, Bezos A, Ferro V, Parish CR (2005) Use of sulfated linked cyclitols as heparan sulfate mimetics to probe the heparin/heparan sulfate binding specificity of proteins. J Biol Chem 280(10):8842–8849PubMedCrossRef Freeman C, Liu L, Banwell MG, Brown KJ, Bezos A, Ferro V, Parish CR (2005) Use of sulfated linked cyclitols as heparan sulfate mimetics to probe the heparin/heparan sulfate binding specificity of proteins. J Biol Chem 280(10):8842–8849PubMedCrossRef
10.
go back to reference Freeman C, Parish CR (1998) Human platelet heparanase: purification, characterization and catalytic activity. Biochem J 330(Pt 3):1341–1350PubMed Freeman C, Parish CR (1998) Human platelet heparanase: purification, characterization and catalytic activity. Biochem J 330(Pt 3):1341–1350PubMed
11.
go back to reference Friedl A, Chang Z, Tierney A, Rapraeger AC (1997) Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues. Am J Pathol 150(4):1443–1455PubMed Friedl A, Chang Z, Tierney A, Rapraeger AC (1997) Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues. Am J Pathol 150(4):1443–1455PubMed
12.
go back to reference Fuki II, Iozzo RV, Williams KJ (2000) Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem 275(40):31554PubMed Fuki II, Iozzo RV, Williams KJ (2000) Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem 275(40):31554PubMed
13.
go back to reference Gilchrest BA (1989) Skin aging and photoaging: an overview. J Am Acad Dermatol 21(3 Pt 2):610–613PubMedCrossRef Gilchrest BA (1989) Skin aging and photoaging: an overview. J Am Acad Dermatol 21(3 Pt 2):610–613PubMedCrossRef
14.
go back to reference Gingis-Velitski S, Ishai-Michaeli R, Vlodavsky I, Ilan N (2007) Anti-heparanase monoclonal antibody enhances heparanase enzymatic activity and facilitates wound healing. Faseb J 21(14):3986–3993PubMedCrossRef Gingis-Velitski S, Ishai-Michaeli R, Vlodavsky I, Ilan N (2007) Anti-heparanase monoclonal antibody enhances heparanase enzymatic activity and facilitates wound healing. Faseb J 21(14):3986–3993PubMedCrossRef
15.
go back to reference Griffiths CE (1992) The clinical identification and quantification of photodamage. Br J Dermatol 127(Suppl 41):37–42PubMedCrossRef Griffiths CE (1992) The clinical identification and quantification of photodamage. Br J Dermatol 127(Suppl 41):37–42PubMedCrossRef
16.
go back to reference Inoue K, Hosoi J, Denda M (2007) Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Investig Dermatol 127(2):362–371PubMedCrossRef Inoue K, Hosoi J, Denda M (2007) Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Investig Dermatol 127(2):362–371PubMedCrossRef
17.
go back to reference Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev 6(8):646–656CrossRef Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev 6(8):646–656CrossRef
18.
go back to reference Iriyama S, Matsunaga Y, Amano S (2010) Heparanase activation induces epidermal hyperplasia, angiogenesis, lymphangiogenesis and wrinkles. Exp Dermatol 19(11):965–972 Iriyama S, Matsunaga Y, Amano S (2010) Heparanase activation induces epidermal hyperplasia, angiogenesis, lymphangiogenesis and wrinkles. Exp Dermatol 19(11):965–972
19.
go back to reference Kadoya K, Sasaki T, Kostka G, Timpl R, Matsuzaki K, Kumagai N, Sakai LY, Nishiyama T, Amano S (2005) Fibulin-5 deposition in human skin: decrease with ageing and ultraviolet B exposure and increase in solar elastosis. Br J Dermatol 153(3):607–612PubMedCrossRef Kadoya K, Sasaki T, Kostka G, Timpl R, Matsuzaki K, Kumagai N, Sakai LY, Nishiyama T, Amano S (2005) Fibulin-5 deposition in human skin: decrease with ageing and ultraviolet B exposure and increase in solar elastosis. Br J Dermatol 153(3):607–612PubMedCrossRef
20.
go back to reference Kajiya K, Hirakawa S, Detmar M (2006) Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am J Pathol 169(4):1496–1503PubMedCrossRef Kajiya K, Hirakawa S, Detmar M (2006) Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am J Pathol 169(4):1496–1503PubMedCrossRef
21.
go back to reference Kajiya K, Kunstfeld R, Detmar M, Chung JH (2007) Reduction of lymphatic vessels in photodamaged human skin. J Dermatol Sci 47(3):241–243PubMedCrossRef Kajiya K, Kunstfeld R, Detmar M, Chung JH (2007) Reduction of lymphatic vessels in photodamaged human skin. J Dermatol Sci 47(3):241–243PubMedCrossRef
22.
go back to reference Kan M, Wu X, Wang F, McKeehan WL (1999) Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 274(22):15947–15952PubMedCrossRef Kan M, Wu X, Wang F, McKeehan WL (1999) Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 274(22):15947–15952PubMedCrossRef
23.
go back to reference Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM, Bernfield M (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4(6):691–697PubMedCrossRef Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM, Bernfield M (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4(6):691–697PubMedCrossRef
24.
go back to reference Kobayashi M, Naomoto Y, Nobuhisa T, Okawa T, Takaoka M, Shirakawa Y, Yamatsuji T, Matsuoka J, Mizushima T, Matsuura H, Nakajima M, Nakagawa H, Rustgi A, Tanaka N (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differ Res Biol Divers 74(5):235–243 Kobayashi M, Naomoto Y, Nobuhisa T, Okawa T, Takaoka M, Shirakawa Y, Yamatsuji T, Matsuoka J, Mizushima T, Matsuura H, Nakajima M, Nakagawa H, Rustgi A, Tanaka N (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differ Res Biol Divers 74(5):235–243
25.
go back to reference Koyama Y, Naruo H, Yoshitomi Y, Munesue S, Kiyono S, Kusano Y, Hashimoto K, Yokoi T, Nakanishi H, Shimizu S, Okayama M, Oguri K (2008) Matrix metalloproteinase-9 associated with heparan sulphate chains of GPI-anchored cell surface proteoglycans mediates motility of murine colon adenocarcinoma cells. J Biochem 143(5):581–592PubMedCrossRef Koyama Y, Naruo H, Yoshitomi Y, Munesue S, Kiyono S, Kusano Y, Hashimoto K, Yokoi T, Nakanishi H, Shimizu S, Okayama M, Oguri K (2008) Matrix metalloproteinase-9 associated with heparan sulphate chains of GPI-anchored cell surface proteoglycans mediates motility of murine colon adenocarcinoma cells. J Biochem 143(5):581–592PubMedCrossRef
26.
go back to reference Kreuger J, Salmivirta M, Sturiale L, Gimenez-Gallego G, Lindahl U (2001) Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J Biol Chem 276(33):30744–30752PubMedCrossRef Kreuger J, Salmivirta M, Sturiale L, Gimenez-Gallego G, Lindahl U (2001) Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J Biol Chem 276(33):30744–30752PubMedCrossRef
27.
go back to reference Lavker RM (1979) Structural alterations in exposed and unexposed aged skin. J Investig Dermatol 73(1):59–66PubMedCrossRef Lavker RM (1979) Structural alterations in exposed and unexposed aged skin. J Investig Dermatol 73(1):59–66PubMedCrossRef
28.
go back to reference Lindner JR, Hillman PR, Barrett AL, Jackson MC, Perry TL, Park Y, Datta S (2007) The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts. BMC Dev Biol 7:121PubMedCrossRef Lindner JR, Hillman PR, Barrett AL, Jackson MC, Perry TL, Park Y, Datta S (2007) The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts. BMC Dev Biol 7:121PubMedCrossRef
29.
go back to reference Luo Y, Ye S, Kan M, McKeehan WL (2006) Control of fibroblast growth factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs. J Biol Chem 281(30):21052–21061PubMedCrossRef Luo Y, Ye S, Kan M, McKeehan WL (2006) Control of fibroblast growth factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs. J Biol Chem 281(30):21052–21061PubMedCrossRef
30.
go back to reference Maas-Szabowski N, Shimotoyodome A, Fusenig NE (1999) Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J Cell Sci 112(Pt 12):1843–1853PubMed Maas-Szabowski N, Shimotoyodome A, Fusenig NE (1999) Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J Cell Sci 112(Pt 12):1843–1853PubMed
31.
go back to reference Malgouries S, Donovan M, Thibaut S, Bernard BA (2008) Heparanase 1: a key participant of inner root sheath differentiation program and hair follicle homeostasis. Exp Dermatol 17(12):1017–1023 Malgouries S, Donovan M, Thibaut S, Bernard BA (2008) Heparanase 1: a key participant of inner root sheath differentiation program and hair follicle homeostasis. Exp Dermatol 17(12):1017–1023
32.
go back to reference Nakajima M, Irimura T, Di Ferrante N, Nicolson GL (1984) Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem 259(4):2283–2290PubMed Nakajima M, Irimura T, Di Ferrante N, Nicolson GL (1984) Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem 259(4):2283–2290PubMed
33.
go back to reference Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471(3):M99–M108PubMed Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471(3):M99–M108PubMed
34.
go back to reference Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development (Cambridge, England) 134(23):4177–4186 Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development (Cambridge, England) 134(23):4177–4186
35.
go back to reference Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404(6779):725–728PubMedCrossRef Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404(6779):725–728PubMedCrossRef
36.
go back to reference Pikas DS, Li JP, Vlodavsky I, Lindahl U (1998) Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 273(30):18770–18777PubMedCrossRef Pikas DS, Li JP, Vlodavsky I, Lindahl U (1998) Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 273(30):18770–18777PubMedCrossRef
37.
go back to reference Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283(47):32628–32636PubMedCrossRef Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283(47):32628–32636PubMedCrossRef
38.
go back to reference Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D (2004) Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J Biol Chem 279(9):8047–8055PubMedCrossRef Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D (2004) Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J Biol Chem 279(9):8047–8055PubMedCrossRef
39.
go back to reference Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmuller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N, Peters C (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118(Pt 15):3387–3395PubMedCrossRef Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmuller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N, Peters C (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118(Pt 15):3387–3395PubMedCrossRef
40.
go back to reference Shafat I, Vlodavsky I, Ilan N (2006) Characterization of mechanisms involved in secretion of active heparanase. J Biol Chem 281(33):23804–23811PubMedCrossRef Shafat I, Vlodavsky I, Ilan N (2006) Characterization of mechanisms involved in secretion of active heparanase. J Biol Chem 281(33):23804–23811PubMedCrossRef
41.
go back to reference Spencer JL, Stone PJ, Nugent MA (2006) New insights into the inhibition of human neutrophil elastase by heparin. Biochemistry 45(30):9104–9120PubMedCrossRef Spencer JL, Stone PJ, Nugent MA (2006) New insights into the inhibition of human neutrophil elastase by heparin. Biochemistry 45(30):9104–9120PubMedCrossRef
42.
go back to reference Tammela T, He Y, Lyytikka J, Jeltsch M, Markkanen J, Pajusola K, Yla-Herttuala S, Alitalo K (2007) Distinct architecture of lymphatic vessels induced by chimeric vascular endothelial growth factor-C/vascular endothelial growth factor heparin-binding domain fusion proteins. Circ Res 100(10):1468–1475PubMedCrossRef Tammela T, He Y, Lyytikka J, Jeltsch M, Markkanen J, Pajusola K, Yla-Herttuala S, Alitalo K (2007) Distinct architecture of lymphatic vessels induced by chimeric vascular endothelial growth factor-C/vascular endothelial growth factor heparin-binding domain fusion proteins. Circ Res 100(10):1468–1475PubMedCrossRef
43.
go back to reference Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Investig 108(3):341–347PubMed Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Investig 108(3):341–347PubMed
44.
go back to reference Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15(2):177–186PubMedCrossRef Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15(2):177–186PubMedCrossRef
45.
go back to reference Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105(7):2745–2764PubMedCrossRef Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105(7):2745–2764PubMedCrossRef
46.
go back to reference Yano K, Kadoya K, Kajiya K, Hong YK, Detmar M (2005) Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1. Br J Dermatol 152(1):115–121PubMedCrossRef Yano K, Kadoya K, Kajiya K, Hong YK, Detmar M (2005) Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1. Br J Dermatol 152(1):115–121PubMedCrossRef
47.
go back to reference Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R (2005) Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. Faseb J 19(2):211–221PubMedCrossRef Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R (2005) Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. Faseb J 19(2):211–221PubMedCrossRef
Metadata
Title
Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal–epidermal junction in human skin
Authors
Shunsuke Iriyama
Yukiko Matsunaga
Kazuhiro Takahashi
Kyoichi Matsuzaki
Norio Kumagai
Satoshi Amano
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
Archives of Dermatological Research / Issue 4/2011
Print ISSN: 0340-3696
Electronic ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-010-1117-5

Other articles of this Issue 4/2011

Archives of Dermatological Research 4/2011 Go to the issue