Skip to main content
Top
Published in: Archives of Orthopaedic and Trauma Surgery 2/2004

01-03-2004 | Original Article

Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates

Authors: G. D. Krischak, F. Gebhard, W. Mohr, V. Krivan, A. Ignatius, A. Beck, N. J. Wachter, P. Reuter, M. Arand, L. Kinzl, L. E. Claes

Published in: Archives of Orthopaedic and Trauma Surgery | Issue 2/2004

Login to get access

Abstract

Introduction

Stainless steel and commercially pure titanium are widely used materials in orthopedic implants. However, it is still being controversially discussed whether there are significant differences in tissue reaction and metallic release, which should result in a recommendation for preferred use in clinical practice.

Materials and methods

A comparative study was performed using 14 stainless steel and 8 commercially pure titanium plates retrieved after a 12-month implantation period. To avoid contamination of the tissue with the elements under investigation, surgical instruments made of zirconium dioxide were used. The tissue samples were analyzed histologically and by inductively coupled plasma atomic emission spectrometry (ICP-AES) for accumulation of the metals Fe, Cr, Mo, Ni, and Ti in the local tissues. Implant corrosion was determined by the use of scanning electron microscopy (SEM).

Results

With grades 2 or higher in 9 implants, steel plates revealed a higher extent of corrosion in the SEM compared with titanium, where only one implant showed corrosion grade 2. Metal uptake of all measured ions (Fe, Cr, Mo, Ni) was significantly increased after stainless steel implantation, whereas titanium revealed only high concentrations for Ti. For the two implant materials, a different distribution of the accumulated metals was found by histological examination. Whereas specimens after steel implantation revealed a diffuse siderosis of connective tissue cells, those after titanium exhibited occasionally a focal siderosis due to implantation-associated bleeding. Neither titanium- nor stainless steel-loaded tissues revealed any signs of foreign-body reaction.

Conclusion

We conclude from the increased release of toxic, allergic, and potentially carcinogenic ions adjacent to stainless steel that commercially pure Ti should be treated as the preferred material for osteosyntheses if a removal of the implant is not intended. However, neither material provoked a foreign-body reaction in the local tissues, thus cpTi cannot be recommend as the ‘golden standard’ for osteosynthesis material in general.
Literature
1.
go back to reference Affato S, Ferrari G, Chevalier J, Ruggeri O, Toni A (2002) Surface characterization and debris analysis of ceramic pairings after ten million cycles on a hip joint simulator. Proc Inst Mech Eng [H] 216:419–424 Affato S, Ferrari G, Chevalier J, Ruggeri O, Toni A (2002) Surface characterization and debris analysis of ceramic pairings after ten million cycles on a hip joint simulator. Proc Inst Mech Eng [H] 216:419–424
2.
go back to reference Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M (1996) Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br 78:647–651PubMed Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M (1996) Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br 78:647–651PubMed
3.
go back to reference Bianco PD, Ducheyne P, Cuckler JM (1998) Local accumulation of titanium released from a titanium implant in the absence of wear. J Biomed Mater Res 31:227–234CrossRef Bianco PD, Ducheyne P, Cuckler JM (1998) Local accumulation of titanium released from a titanium implant in the absence of wear. J Biomed Mater Res 31:227–234CrossRef
4.
go back to reference Black J, Sherk H, Bonini J, Rostoker WR, Schajowicz F, Galante JO (1990) Metallosis associated with a stable titanium-alloy femoral component in total hip replacement. J Bone Joint Surg Am 72:126–130PubMed Black J, Sherk H, Bonini J, Rostoker WR, Schajowicz F, Galante JO (1990) Metallosis associated with a stable titanium-alloy femoral component in total hip replacement. J Bone Joint Surg Am 72:126–130PubMed
5.
go back to reference Case CP, Langkamer VG, James C, Palmer MR, Kemp AJ, Heap PF, Solomon L (1994) Widespread dissemination of metal debris from implants. J Bone Joint Surg Br 76:701–712PubMed Case CP, Langkamer VG, James C, Palmer MR, Kemp AJ, Heap PF, Solomon L (1994) Widespread dissemination of metal debris from implants. J Bone Joint Surg Br 76:701–712PubMed
6.
go back to reference Cook SD, Renz EA, Barrack RL, Thomas KA, Harding AF, Haddad RJ Jr, Milicic M (1985) Clinical and metallurgical analysis of retrieved internal fixation devices. Clin Orthop 194:236–247PubMed Cook SD, Renz EA, Barrack RL, Thomas KA, Harding AF, Haddad RJ Jr, Milicic M (1985) Clinical and metallurgical analysis of retrieved internal fixation devices. Clin Orthop 194:236–247PubMed
7.
go back to reference Cunningham BW, Orbegoso CM, Dmitriev AE, Hallab NJ, Sefter JC, McAfee PC (2002) The effect of titanium particulate on development and maintenance of a posterolateral spinal arthrodesis: an in vivo rabbit model. Spine 27:1971–1981CrossRefPubMed Cunningham BW, Orbegoso CM, Dmitriev AE, Hallab NJ, Sefter JC, McAfee PC (2002) The effect of titanium particulate on development and maintenance of a posterolateral spinal arthrodesis: an in vivo rabbit model. Spine 27:1971–1981CrossRefPubMed
8.
go back to reference Doran A, Law FC, Allen MJ, Rushton N (1999) Neoplastic transformation of cells by soluble but not particulate forms of metals used in orthopaedic implants. Biomaterials 19:751–759CrossRef Doran A, Law FC, Allen MJ, Rushton N (1999) Neoplastic transformation of cells by soluble but not particulate forms of metals used in orthopaedic implants. Biomaterials 19:751–759CrossRef
9.
go back to reference Ducheyne P, Willems G, Martens M, Helsen J (1984) In vivo metal-ion release from porous titanium-fiber material. J Biomed Mater Res 18:293–308PubMed Ducheyne P, Willems G, Martens M, Helsen J (1984) In vivo metal-ion release from porous titanium-fiber material. J Biomed Mater Res 18:293–308PubMed
10.
go back to reference Gotman I (1997) Characteristics of metals used in implants. J Endourol 11:383–389PubMed Gotman I (1997) Characteristics of metals used in implants. J Endourol 11:383–389PubMed
11.
go back to reference Haudrechy P, Mantout B, Frappaz A, Rousseau A, Chabeau G, Faure M, Claudy A (1997) Nickel release from stainless steel. Contact Dermatitis 37:113–117PubMed Haudrechy P, Mantout B, Frappaz A, Rousseau A, Chabeau G, Faure M, Claudy A (1997) Nickel release from stainless steel. Contact Dermatitis 37:113–117PubMed
12.
go back to reference Haynes DR, Crotti TN, Haywood MR (2000) Corrosion of and changes in biological effects of cobalt chrome alloy and 316L stainless steel prosthetic particles with age. J Biomed Mater Res 49:167–175CrossRefPubMed Haynes DR, Crotti TN, Haywood MR (2000) Corrosion of and changes in biological effects of cobalt chrome alloy and 316L stainless steel prosthetic particles with age. J Biomed Mater Res 49:167–175CrossRefPubMed
13.
go back to reference Hunt JA, Williams DF, Ungersboeck A, Perren S (1994) The effect of titanium debris on soft tissue response. J Mater Sci Mater Med 5:381–383 Hunt JA, Williams DF, Ungersboeck A, Perren S (1994) The effect of titanium debris on soft tissue response. J Mater Sci Mater Med 5:381–383
14.
go back to reference Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 80:268–282PubMed Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 80:268–282PubMed
15.
go back to reference Kim YK, Yeo HH, Lim SC (1997) Tissue response to titanium plates: a transmitted electron microscopic study. J Oral Maxillofac Surg 55:322–326PubMed Kim YK, Yeo HH, Lim SC (1997) Tissue response to titanium plates: a transmitted electron microscopic study. J Oral Maxillofac Surg 55:322–326PubMed
16.
go back to reference Kraft CN, Burian B, Perlick L, Wimmer MA, Wallny T, Schmitt O, Diedrich O (2001) Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: a comparative in vivo study. J Biomed Mater Res 57:404–412CrossRefPubMed Kraft CN, Burian B, Perlick L, Wimmer MA, Wallny T, Schmitt O, Diedrich O (2001) Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: a comparative in vivo study. J Biomed Mater Res 57:404–412CrossRefPubMed
17.
go back to reference Kraft CN, Diedrich O, Burian B, Schmitt O, Wimmer MA (2003) Microvascular response of striated muscle to metal debris. A comparative in vivo study with titanium and stainless steel. J Bone Joint Surg Br 85:133–141CrossRefPubMed Kraft CN, Diedrich O, Burian B, Schmitt O, Wimmer MA (2003) Microvascular response of striated muscle to metal debris. A comparative in vivo study with titanium and stainless steel. J Bone Joint Surg Br 85:133–141CrossRefPubMed
18.
go back to reference Krivan V (1986) Application of radiotracers to methodological studies in trace element analysis. In: Elving PJ (ed) Offprints from treatise on analytical chemistry. John Wiley, Philadelphia, pp 339–417 Krivan V (1986) Application of radiotracers to methodological studies in trace element analysis. In: Elving PJ (ed) Offprints from treatise on analytical chemistry. John Wiley, Philadelphia, pp 339–417
19.
go back to reference Langford RJ, Frame JW (2002) Tissue changes adjacent to titanium plates in patients. J Craniomaxillofac Surg 30:103–107CrossRefPubMed Langford RJ, Frame JW (2002) Tissue changes adjacent to titanium plates in patients. J Craniomaxillofac Surg 30:103–107CrossRefPubMed
20.
go back to reference Mackay D, Gower A, Mawhinney B, Gregg PJ, McCaskie AW (2000) Metallic instrument debris: a source of third-body wear particles? J Arthroplasty 15:816–818CrossRefPubMed Mackay D, Gower A, Mawhinney B, Gregg PJ, McCaskie AW (2000) Metallic instrument debris: a source of third-body wear particles? J Arthroplasty 15:816–818CrossRefPubMed
21.
go back to reference Matthew IR, Frame JW (2000) Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90:33–38CrossRefPubMed Matthew IR, Frame JW (2000) Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90:33–38CrossRefPubMed
22.
go back to reference Morais S, Sousa JP, Fernandes MH, Carvalho GS, Bruijn JD de, Blitterswijk CA van (1998) Decreased consumption of Ca and P during in vitro biomineralization and biologically induced deposition of Ni and Cr in presence of stainless steel corrosion products. J Biomed Mater Res 42:199–212CrossRefPubMed Morais S, Sousa JP, Fernandes MH, Carvalho GS, Bruijn JD de, Blitterswijk CA van (1998) Decreased consumption of Ca and P during in vitro biomineralization and biologically induced deposition of Ni and Cr in presence of stainless steel corrosion products. J Biomed Mater Res 42:199–212CrossRefPubMed
23.
go back to reference Naidu SH, Warner CP, Laird C (1996) Mechanical stamping: a cause of fatigue fracture. Clin Orthop 328:261–267CrossRefPubMed Naidu SH, Warner CP, Laird C (1996) Mechanical stamping: a cause of fatigue fracture. Clin Orthop 328:261–267CrossRefPubMed
24.
go back to reference Okamoto K (1996) Problems related to trace element determination in biological materials. Nippon Rinsho 54:186–191PubMed Okamoto K (1996) Problems related to trace element determination in biological materials. Nippon Rinsho 54:186–191PubMed
25.
go back to reference Pereira MC, Pereira ML, Sousa JP (1998) Evaluation of nickel toxicity on liver, spleen, and kidney of mice after administration of high-dose metal ion. J Biomed Mater Res 40:40–47CrossRefPubMed Pereira MC, Pereira ML, Sousa JP (1998) Evaluation of nickel toxicity on liver, spleen, and kidney of mice after administration of high-dose metal ion. J Biomed Mater Res 40:40–47CrossRefPubMed
26.
go back to reference Pereira ML, Silva A, Tracana R, Carvalho GS (1994) Toxic effects caused by stainless steel corrosion products on mouse seminiferous cells. Cytobios 77:73–80PubMed Pereira ML, Silva A, Tracana R, Carvalho GS (1994) Toxic effects caused by stainless steel corrosion products on mouse seminiferous cells. Cytobios 77:73–80PubMed
27.
go back to reference Pietra R, Sabbioni E, Brossa F, Gallorini M, Faruffini G, Fumagalli EM (1990) Titanium nitride as a coating for surgical instruments used to collect human tissue for trace metal analysis. Analyst 115:1025–1028PubMed Pietra R, Sabbioni E, Brossa F, Gallorini M, Faruffini G, Fumagalli EM (1990) Titanium nitride as a coating for surgical instruments used to collect human tissue for trace metal analysis. Analyst 115:1025–1028PubMed
28.
go back to reference Rawlings RD, Robinson PB, Rogers PS (1995) The durability of ceramic coated dental instruments. Eur J Prosthodont Restor Dent 3:211–216PubMed Rawlings RD, Robinson PB, Rogers PS (1995) The durability of ceramic coated dental instruments. Eur J Prosthodont Restor Dent 3:211–216PubMed
29.
go back to reference Rodushkin I, Odman F (2001) Assessment of the contamination from devices used for sampling and storage of whole blood and serum for analysis. J Trace Elem Med Biol 15:40–45PubMed Rodushkin I, Odman F (2001) Assessment of the contamination from devices used for sampling and storage of whole blood and serum for analysis. J Trace Elem Med Biol 15:40–45PubMed
30.
go back to reference Savory J, Herman MM (1999) Advances in instrumental methods for the measurement and speciation of trace metals. Ann Clin Lab Sci 29:118–126PubMed Savory J, Herman MM (1999) Advances in instrumental methods for the measurement and speciation of trace metals. Ann Clin Lab Sci 29:118–126PubMed
31.
go back to reference Schmalz G, Schuster U, Schweikl H (1998) Influence of metals on IL-6 release in vitro. Biomaterials 19:1689–1694CrossRefPubMed Schmalz G, Schuster U, Schweikl H (1998) Influence of metals on IL-6 release in vitro. Biomaterials 19:1689–1694CrossRefPubMed
32.
go back to reference Schmitt Y (1987) Influence of preanalytical factors on the atomic absorption spectrometry determination of trace elements in biological samples. J Trace Elem Electrolytes Health Dis 1:107–114PubMed Schmitt Y (1987) Influence of preanalytical factors on the atomic absorption spectrometry determination of trace elements in biological samples. J Trace Elem Electrolytes Health Dis 1:107–114PubMed
33.
go back to reference Simpson JP, Geret V, Brown SA, Merritt K (1981) Retrieved fracture plates: implant and tissue analysis. In: Weinstein A, Gibbons D, Brown SA, Ruff A, (eds) Implant retrieval: material and biological analysis. NBS special publication 601, Washington DC, pp 395–422 Simpson JP, Geret V, Brown SA, Merritt K (1981) Retrieved fracture plates: implant and tissue analysis. In: Weinstein A, Gibbons D, Brown SA, Ruff A, (eds) Implant retrieval: material and biological analysis. NBS special publication 601, Washington DC, pp 395–422
34.
go back to reference Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH (1999) Surface characterization of implant materials c.p.Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J Mater Sci Mater Med 10:35–46CrossRef Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH (1999) Surface characterization of implant materials c.p.Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J Mater Sci Mater Med 10:35–46CrossRef
35.
go back to reference Smith RG (1972) Five of potential significance. In: Lee DHK (ed) Metallic contaminants and human health. Academic Press, New York, pp 139–162 Smith RG (1972) Five of potential significance. In: Lee DHK (ed) Metallic contaminants and human health. Academic Press, New York, pp 139–162
36.
go back to reference Steinemann SG (1996) Metal implants and surface reactions. Injury [suppl] 3:S-C16–22 Steinemann SG (1996) Metal implants and surface reactions. Injury [suppl] 3:S-C16–22
37.
go back to reference Thewes M, Kretschmer R, Gfesser M, Rakoski J, Nerlich M, Borelli S, Ring J (2001) Immunohistochemical characterization of the perivascular infiltrate cells in tissues adjacent to stainless steel implants compared with titanium implants. Arch Orthop Trauma Surg 121:223–226CrossRefPubMed Thewes M, Kretschmer R, Gfesser M, Rakoski J, Nerlich M, Borelli S, Ring J (2001) Immunohistochemical characterization of the perivascular infiltrate cells in tissues adjacent to stainless steel implants compared with titanium implants. Arch Orthop Trauma Surg 121:223–226CrossRefPubMed
38.
go back to reference Togersen S, Gjerdet NR, Erichsen ES, Bang G (1995) Metal particles and tissue changes adjacent to miniplates. A retrieval study. Acta Odontol Scand 53:65–71PubMed Togersen S, Gjerdet NR, Erichsen ES, Bang G (1995) Metal particles and tissue changes adjacent to miniplates. A retrieval study. Acta Odontol Scand 53:65–71PubMed
39.
go back to reference Torgersen S, Moe G, Jonsson R (1995) Immunocompetent cells adjacent to stainless steel and titanium miniplates and screws. Eur J Oral Sci 103:46–54PubMed Torgersen S, Moe G, Jonsson R (1995) Immunocompetent cells adjacent to stainless steel and titanium miniplates and screws. Eur J Oral Sci 103:46–54PubMed
40.
go back to reference Ungersboeck A, Perren SM, Pohler O (1994) Comparison of tissue reaction to implants made of beta titanium alloy and pure titanium. Experimental study on rabbits. J Mater Sci Mater Med 5:788–792 Ungersboeck A, Perren SM, Pohler O (1994) Comparison of tissue reaction to implants made of beta titanium alloy and pure titanium. Experimental study on rabbits. J Mater Sci Mater Med 5:788–792
41.
go back to reference Ungersboeck A, Geret V, Pohler O, Schuetz M, Wuest W (1995) Tissue reaction to bone plates made of pure titanium: a prospective, quantitative clinical study. J Mater Sci Mater Med 6:223–229 Ungersboeck A, Geret V, Pohler O, Schuetz M, Wuest W (1995) Tissue reaction to bone plates made of pure titanium: a prospective, quantitative clinical study. J Mater Sci Mater Med 6:223–229
42.
go back to reference Uo M, Watari F, Yokoyama A, Matsuno H, Kawasaki T (2001) Tissue reaction around metal implants observed by X-ray scanning analytical microscopy. Biomaterials 22:677–685CrossRefPubMed Uo M, Watari F, Yokoyama A, Matsuno H, Kawasaki T (2001) Tissue reaction around metal implants observed by X-ray scanning analytical microscopy. Biomaterials 22:677–685CrossRefPubMed
43.
go back to reference Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82:457–476PubMed Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82:457–476PubMed
44.
go back to reference Villalba A, Elorza MA, Coll R (1993) Contamination of biological samples in metal determination. Clin Chim Acta 214:243–244CrossRefPubMed Villalba A, Elorza MA, Coll R (1993) Contamination of biological samples in metal determination. Clin Chim Acta 214:243–244CrossRefPubMed
45.
go back to reference Voggenreiter G, Leiting S, Brauer H, Leiting P, Majetschak M, Bardenheuer M, Obertacke U (2003) Immuno-inflammatory tissue reaction to stainless-steel and titanium plates used for internal fixation of long bones. Biomaterials 24:247–254CrossRefPubMed Voggenreiter G, Leiting S, Brauer H, Leiting P, Majetschak M, Bardenheuer M, Obertacke U (2003) Immuno-inflammatory tissue reaction to stainless-steel and titanium plates used for internal fixation of long bones. Biomaterials 24:247–254CrossRefPubMed
46.
go back to reference Zavanelli RA, Pessanha Henriques GE, Ferreira I, De Almeida Rollo JM (2000) Corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloys in different storage environments. J Prosthet Dent 84:274–279CrossRefPubMed Zavanelli RA, Pessanha Henriques GE, Ferreira I, De Almeida Rollo JM (2000) Corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloys in different storage environments. J Prosthet Dent 84:274–279CrossRefPubMed
47.
go back to reference Zuolo ML, Walton RE (1997) Instrument deterioration with usage: nickel-titanium versus stainless steel. Quintessence Int 28:397–402PubMed Zuolo ML, Walton RE (1997) Instrument deterioration with usage: nickel-titanium versus stainless steel. Quintessence Int 28:397–402PubMed
Metadata
Title
Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates
Authors
G. D. Krischak
F. Gebhard
W. Mohr
V. Krivan
A. Ignatius
A. Beck
N. J. Wachter
P. Reuter
M. Arand
L. Kinzl
L. E. Claes
Publication date
01-03-2004
Publisher
Springer-Verlag
Published in
Archives of Orthopaedic and Trauma Surgery / Issue 2/2004
Print ISSN: 0936-8051
Electronic ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-003-0614-9

Other articles of this Issue 2/2004

Archives of Orthopaedic and Trauma Surgery 2/2004 Go to the issue