Skip to main content
Top
Published in: Archives of Orthopaedic and Trauma Surgery 4/2004

01-05-2004 | Original Article

Structure of the human tibialis posterior tendon

Authors: Wolf Petersen, Gerrit Hohmann, Thomas Pufe, Michael Tsokos, Thore Zantop, Friedrich Paulsen, Bernhard Tillmann

Published in: Archives of Orthopaedic and Trauma Surgery | Issue 4/2004

Login to get access

Abstract

Background

The most common site of rupture of the posterior tibial tendon is the retromalleolar region where the tendon changes its direction of pull. The aim of this study was to characterize the tissue of the gliding zone of the tibialis posterior tendon to gain further knowledge about possible structural causes for spontaneous tendon rupture.

Methods

Light microscopy, transmission electron microscopy and immunohistochemical methods were used to describe the structure of the human tibialis posterior tendon.

Results

In the region where the tendon wraps around the medial malleolus, the structure of the tissue changes from the typical structure of a traction tendon. The superficial zone which was directed towards the pulley tissue had the structure of fibrocartilage with a specific three-dimensional collagen fibril texture. Transmission electron microscopy showed chondrocytes with a felt-like pericellular matrix that increased in size towards the gliding surface. The extracellular matrix of the fibrocartilage was rich in acid glycosaminoglycans and stained intensively with alcian blue at pH 1. Immunohistochemical staining of cartilage-specific extracellular matrix components such as type II collagen, chondroitin-4-sulphate, chondroitin-6-sulphate, keratan sulphate and aggrecan was positive.

Conclusion

The location of the fibrocartilage corresponds to the region where the tibialis posterior tendon wraps around the medial malleolus, which serves as a pulley. According to the theory of 'causal histogenesis', the stimulus for the development of fibrocartilage within dense connective tissue is intermittent compressive and shear stress. The fibrocartilaginous region is the region where most spontaneous ruptures of the tibialis posterior tendon occur. Due to its structure, the fibrocartilaginous region may be more vulnerable to repetitive tensile microtrauma; degeneration may occur due to the poor repair response of the avascular fibrocartilaginous tissue.
Literature
1.
go back to reference Altmann K (1964) Zur kausalen Histiogenese des Knorpels. W. Roux`s Theorie und experimentelle Wirklichkeit. Z Anat Entwicklungsgesch 37:1–167 Altmann K (1964) Zur kausalen Histiogenese des Knorpels. W. Roux`s Theorie und experimentelle Wirklichkeit. Z Anat Entwicklungsgesch 37:1–167
2.
3.
go back to reference Benjamin M, Quin S, Ralphs JR (1995) Fibrocartilage associated with human tendons and their pulleys. J Anat 187:625–633PubMed Benjamin M, Quin S, Ralphs JR (1995) Fibrocartilage associated with human tendons and their pulleys. J Anat 187:625–633PubMed
4.
go back to reference Caterson B, Calabo T, Donohue PJ, Jahnke MR (1986) Monoclonal antibodies against cartilage proteoglycan and link protein. In: Kuettner K (ed) Articular cartilage biochemistry. Raven Press, New York, pp 59–73 Caterson B, Calabo T, Donohue PJ, Jahnke MR (1986) Monoclonal antibodies against cartilage proteoglycan and link protein. In: Kuettner K (ed) Articular cartilage biochemistry. Raven Press, New York, pp 59–73
5.
go back to reference Frey C, Shereff M, Greenidgen N (1990) Vascularity of the posterior tibial tendon. J Bone Joint Surg Am 72:884–888PubMed Frey C, Shereff M, Greenidgen N (1990) Vascularity of the posterior tibial tendon. J Bone Joint Surg Am 72:884–888PubMed
6.
go back to reference Gillard GC, Rilley HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit extensor flexor digitorum longus tendon. Connect Tissue Res 7:37–42 Gillard GC, Rilley HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit extensor flexor digitorum longus tendon. Connect Tissue Res 7:37–42
7.
go back to reference Giore NJ, Beaupré GS, Carter DR (1993) Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 11:581–591PubMed Giore NJ, Beaupré GS, Carter DR (1993) Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 11:581–591PubMed
8.
go back to reference Hintermann B (1995) Die Dysfunktion des M. tibialis posterior infolge Sehneninsuffizienz. Orthopaede 24:193–199 Hintermann B (1995) Die Dysfunktion des M. tibialis posterior infolge Sehneninsuffizienz. Orthopaede 24:193–199
9.
go back to reference Janis LR, Wagner JT, Kravitz RD, Greenberg JJ (1993) Posterior tibial tendon rupture: classification, modified surgical repair, and retrospective study. J Foot Ankle Surg 32:2–13PubMed Janis LR, Wagner JT, Kravitz RD, Greenberg JJ (1993) Posterior tibial tendon rupture: classification, modified surgical repair, and retrospective study. J Foot Ankle Surg 32:2–13PubMed
10.
go back to reference Johnson KA, Strom DE (1989) Tibialis posterior dysfunction. Clin Orthop 239:196–206 Johnson KA, Strom DE (1989) Tibialis posterior dysfunction. Clin Orthop 239:196–206
11.
go back to reference Josza L, Kannus P (1998) Human tendons. Human Kinetics, London Josza L, Kannus P (1998) Human tendons. Human Kinetics, London
12.
go back to reference Kannus P, Josza L (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study in 891 patients. J Bone Joint Surg Am 73:1507–1525PubMed Kannus P, Josza L (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study in 891 patients. J Bone Joint Surg Am 73:1507–1525PubMed
13.
go back to reference Koch S, Tillmann B (1995) The distal tendon of biceps brachii. Ann Anat 177:467–474 Koch S, Tillmann B (1995) The distal tendon of biceps brachii. Ann Anat 177:467–474
14.
go back to reference Leadbetter WB (1992) Cell-matrix response in tendon injury. Clin Sports Med 11:533–542PubMed Leadbetter WB (1992) Cell-matrix response in tendon injury. Clin Sports Med 11:533–542PubMed
15.
go back to reference Mann RA, Thompson FM (1985) Rupture of the posterior tibial tendon causing flat foot. J Bone Joint Surg Am 67:556–561PubMed Mann RA, Thompson FM (1985) Rupture of the posterior tibial tendon causing flat foot. J Bone Joint Surg Am 67:556–561PubMed
16.
go back to reference Milz S, Mc Neilly C, Putz R, Ralphs JR, Benjamin M (1998) Fibrocartilage in the extensor tendons of the interphalangeal joints of human toes. Anat Rec 252:264–270CrossRefPubMed Milz S, Mc Neilly C, Putz R, Ralphs JR, Benjamin M (1998) Fibrocartilage in the extensor tendons of the interphalangeal joints of human toes. Anat Rec 252:264–270CrossRefPubMed
17.
go back to reference Moiser SM, Pomeroy G, Manoli A (1999) Pathoanatomy and etiology of posterior tibial tendon dysfunction. Clin Orthop 365:12–22PubMed Moiser SM, Pomeroy G, Manoli A (1999) Pathoanatomy and etiology of posterior tibial tendon dysfunction. Clin Orthop 365:12–22PubMed
18.
go back to reference Pauwels F (1960) Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. Zehnter Beitrag zur funktionellen Anatomie und kausalen Morphologie des Stützapparates. Z Anat Entwicklunggesch 121:478–515 Pauwels F (1960) Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. Zehnter Beitrag zur funktionellen Anatomie und kausalen Morphologie des Stützapparates. Z Anat Entwicklunggesch 121:478–515
19.
go back to reference Petersen W, Hohmann G, Stein V, Tillmann B (2001) Blood supply of the posterior tibial tendon—a quantitative study in human cadavers. J Bone Joint Surg Br 84:141–144CrossRef Petersen W, Hohmann G, Stein V, Tillmann B (2001) Blood supply of the posterior tibial tendon—a quantitative study in human cadavers. J Bone Joint Surg Br 84:141–144CrossRef
20.
go back to reference Ploetz E (1938) Funktioneller Bau und funktionelle Anpassung der Gleitsehnen. Z Orthop 67:212–234 Ploetz E (1938) Funktioneller Bau und funktionelle Anpassung der Gleitsehnen. Z Orthop 67:212–234
21.
go back to reference Refior HJ, Kroedel A, Melzer C (1987) Examinations of the pathology of the rotator cuff. Arch Orthop Trauma Surg 106:301–306PubMed Refior HJ, Kroedel A, Melzer C (1987) Examinations of the pathology of the rotator cuff. Arch Orthop Trauma Surg 106:301–306PubMed
22.
go back to reference Uthoff HK, Sarkar K (1991) Pathology of rotator cuff tendons. In: Watson (ed) Surgery disorders of the shoulder. Churchill Livingstone, New York Uthoff HK, Sarkar K (1991) Pathology of rotator cuff tendons. In: Watson (ed) Surgery disorders of the shoulder. Churchill Livingstone, New York
23.
go back to reference Vogel KG, Ördög A, Pogány G, Oláh J (1993) Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments. J Orthop Res 11:68–77PubMed Vogel KG, Ördög A, Pogány G, Oláh J (1993) Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments. J Orthop Res 11:68–77PubMed
Metadata
Title
Structure of the human tibialis posterior tendon
Authors
Wolf Petersen
Gerrit Hohmann
Thomas Pufe
Michael Tsokos
Thore Zantop
Friedrich Paulsen
Bernhard Tillmann
Publication date
01-05-2004
Publisher
Springer-Verlag
Published in
Archives of Orthopaedic and Trauma Surgery / Issue 4/2004
Print ISSN: 0936-8051
Electronic ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-003-0500-5

Other articles of this Issue 4/2004

Archives of Orthopaedic and Trauma Surgery 4/2004 Go to the issue