Skip to main content
Top
Published in: Acta Neuropathologica 6/2016

01-06-2016 | Original Paper

Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status

Authors: Laura Piccio, Yuetiva Deming, Jorge L. Del-Águila, Laura Ghezzi, David M. Holtzman, Anne M. Fagan, Chiara Fenoglio, Daniela Galimberti, Barbara Borroni, Carlos Cruchaga

Published in: Acta Neuropathologica | Issue 6/2016

Login to get access

Abstract

Low frequency coding variants in TREM2 are associated with increased Alzheimer disease (AD) risk, while loss of functions mutations in the gene lead to an autosomal recessive early-onset dementia, named Nasu-Hakola disease (NHD). TREM2 can be detected as a soluble protein in cerebrospinal fluid (CSF) and plasma, and its CSF levels are elevated in inflammatory CNS diseases. We measured soluble TREM2 (sTREM2) in the CSF of a large AD case–control dataset (n = 180) and 40 TREM2 risk variant carriers to determine whether CSF sTREM2 levels are associated with AD status or mutation status. We also performed genetic studies to identify genetic variants associated with CSF sTREM2 levels. CSF, but not plasma, sTREM2 was highly correlated with CSF total tau and phosphorylated-tau levels (r = 0.35, P < 1×10−4; r = 0.40, P < 1×10−4, respectively), but not with CSF Aβ42. AD cases presented higher CSF sTREM2 levels than controls (P = 0.01). Carriers of NHD-associated TREM2 variants presented significantly lower CSF sTREM2 levels, supporting the hypothesis that these mutations lead to reduced protein production/function (R136Q, D87N, Q33X or T66M; P = 1×10−3). In contrast, CSF sTREM2 levels were significantly higher in R47H carriers compared to non-carriers (P = 6×10−3), suggesting that this variant does not impact protein expression and increases AD risk through a different pathogenic mechanism than NHD variants. In GWAS analyses for CSF sTREM2 levels the most significant signal was located on the MS4A gene locus (P = 5.45 × 10−07) corresponding to one of the SNPs reported to be associated with AD risk in this locus. Furthermore, SNPs involved in pathways related to virus cellular entry and vesicular trafficking were overrepresented, suggesting that CSF sTREM2 levels could be an informative phenotype for AD.
Appendix
Available only for authorised users
Literature
12.
go back to reference Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo K et al (2012) Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet. doi:10.1093/hmg/dds296 Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo K et al (2012) Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet. doi:10.​1093/​hmg/​dds296
14.
go back to reference Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J et al (2014) Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 35(726):e711–729. doi:10.1016/j.neurobiolaging.2013.09.009 Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J et al (2014) Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 35(726):e711–729. doi:10.​1016/​j.​neurobiolaging.​2013.​09.​009
15.
go back to reference Doragna D, Tupler R, Ratti MT, Montalbetti L, Papi L, Sestim R (2003) An Italian family affected by Nasu-Hakola disease with a novel genetic mutation in the TREM2 gene. J Neurol Neurosurg Psychiatry 74:825–826CrossRef Doragna D, Tupler R, Ratti MT, Montalbetti L, Papi L, Sestim R (2003) An Italian family affected by Nasu-Hakola disease with a novel genetic mutation in the TREM2 gene. J Neurol Neurosurg Psychiatry 74:825–826CrossRef
16.
go back to reference Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519CrossRefPubMed Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519CrossRefPubMed
17.
20.
go back to reference Hakola HP (1972) Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr Scand Suppl 232:1–173PubMed Hakola HP (1972) Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr Scand Suppl 232:1–173PubMed
21.
go back to reference Jin SC, Pastor P, Cooper B, Cervantes S, Benitez BA, Razquin C et al (2012) Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer’s disease Ibero-American cohort. Alzheimers Res Ther 4:34. doi:10.1186/alzrt137 CrossRefPubMedPubMedCentral Jin SC, Pastor P, Cooper B, Cervantes S, Benitez BA, Razquin C et al (2012) Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer’s disease Ibero-American cohort. Alzheimers Res Ther 4:34. doi:10.​1186/​alzrt137 CrossRefPubMedPubMedCentral
22.
go back to reference Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D et al (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet. doi:10.1093/hmg/ddu277 Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D et al (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet. doi:10.​1093/​hmg/​ddu277
24.
go back to reference Jonsson T, Stefansson H, Ph DS, Jonsdottir I, Jonsson PV, Snaedal Jet al (2012) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. doi:10.1056/NEJMoa1211103 Jonsson T, Stefansson H, Ph DS, Jonsdottir I, Jonsson PV, Snaedal Jet al (2012) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. doi:10.​1056/​NEJMoa1211103
26.
27.
go back to reference Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra286. doi:10.1126/scitranslmed.3009093 Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra286. doi:10.​1126/​scitranslmed.​3009093
29.
go back to reference Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. doi:10.1038/ng.2802 Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. doi:10.​1038/​ng.​2802
30.
go back to reference Lill CM, Rengmark A, Pihlstrom L, Fogh I, Shatunov A, Sleiman PM et al (2015) The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement. doi:10.1016/j.jalz.2014.12.009 Lill CM, Rengmark A, Pihlstrom L, Fogh I, Shatunov A, Sleiman PM et al (2015) The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement. doi:10.​1016/​j.​jalz.​2014.​12.​009
33.
go back to reference McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944CrossRefPubMed McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944CrossRefPubMed
34.
go back to reference Montalbetti L, Ratti MT, Greco B, Aprile C, Moglia A, Soragna D (2005) Neuropsychological tests and functional nuclear neuroimaging provide evidence of subclinical impairment in Nasu-Hakola disease heterozygotes. Funct Neurol 20:71–75PubMed Montalbetti L, Ratti MT, Greco B, Aprile C, Moglia A, Soragna D (2005) Neuropsychological tests and functional nuclear neuroimaging provide evidence of subclinical impairment in Nasu-Hakola disease heterozygotes. Funct Neurol 20:71–75PubMed
35.
go back to reference Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43:2412–2414CrossRefPubMed Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43:2412–2414CrossRefPubMed
37.
go back to reference Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R et al (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–662. doi:10.1086/342259 CrossRefPubMedPubMedCentral Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R et al (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–662. doi:10.​1086/​342259 CrossRefPubMedPubMedCentral
Metadata
Title
Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status
Authors
Laura Piccio
Yuetiva Deming
Jorge L. Del-Águila
Laura Ghezzi
David M. Holtzman
Anne M. Fagan
Chiara Fenoglio
Daniela Galimberti
Barbara Borroni
Carlos Cruchaga
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Acta Neuropathologica / Issue 6/2016
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-016-1533-5

Other articles of this Issue 6/2016

Acta Neuropathologica 6/2016 Go to the issue