Skip to main content
Top
Published in: Acta Neuropathologica 3/2014

Open Access 01-09-2014 | Original Paper

Brain pericytes acquire a microglial phenotype after stroke

Authors: Ilknur Özen, Tomas Deierborg, Kenichi Miharada, Thomas Padel, Elisabet Englund, Guillem Genové, Gesine Paul

Published in: Acta Neuropathologica | Issue 3/2014

Login to get access

Abstract

Pericytes are located on the abluminal side of endothelial cells lining the microvasculature in all organs. They have been identified as multipotent progenitor cells in several tissues of the body including the human brain. New evidence suggests that pericytes contribute to tissue repair, but their role in the injured brain is largely unknown. Here, we investigate the role of pericytes in ischemic stroke. Using a pericyte-reporter mouse model, we provide unique evidence that regulator of G-protein signaling 5 expressing cells are activated pericytes that leave the blood vessel wall, proliferate and give rise to microglial cells after ischemic brain injury. Consistently, we show that activated pericytes express microglial markers in human stroke brain tissue. We demonstrate that human brain-derived pericytes adopt a microglial phenotype and upregulate mRNA specific for activated microglial cells under hypoxic conditions in vitro. Our study indicates that the vasculature is a novel source of inflammatory cells with a microglial phenotype in brain ischemia and hence identifies pericytes as an important new target for the development of future stroke therapies.
Literature
1.
go back to reference Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152PubMed Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152PubMed
2.
go back to reference Arimura K, Ago T, Kamouchi M, Nakamura K, Ishitsuka K, Kuroda J, Sugimori H, Ooboshi H, Sasaki T, Kitazono T (2012) PDGF receptor beta signaling in pericytes following ischemic brain injury. Curr Neurovasc Res 9(1):1–9 (pii:BSP/CNR/E-Pub/00067)PubMedCrossRef Arimura K, Ago T, Kamouchi M, Nakamura K, Ishitsuka K, Kuroda J, Sugimori H, Ooboshi H, Sasaki T, Kitazono T (2012) PDGF receptor beta signaling in pericytes following ischemic brain injury. Curr Neurovasc Res 9(1):1–9 (pii:BSP/CNR/E-Pub/00067)PubMedCrossRef
3.
go back to reference Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561. doi:10.1038/nature09522 PubMedCrossRef Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561. doi:10.​1038/​nature09522 PubMedCrossRef
4.
go back to reference Audoy-Remus J, Richard JF, Soulet D, Zhou H, Kubes P, Vallieres L (2008) Rod-shaped monocytes patrol the brain vasculature and give rise to perivascular macrophages under the influence of proinflammatory cytokines and angiopoietin-2. J Neurosci 28(41):10187–10199. doi:10.1523/JNEUROSCI.3510-08.2008 PubMedCrossRef Audoy-Remus J, Richard JF, Soulet D, Zhou H, Kubes P, Vallieres L (2008) Rod-shaped monocytes patrol the brain vasculature and give rise to perivascular macrophages under the influence of proinflammatory cytokines and angiopoietin-2. J Neurosci 28(41):10187–10199. doi:10.​1523/​JNEUROSCI.​3510-08.​2008 PubMedCrossRef
5.
go back to reference Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc Res 52(2):127–142PubMedCrossRef Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc Res 52(2):127–142PubMedCrossRef
7.
go back to reference Berger M, Bergers G, Arnold B, Hammerling GJ, Ganss R (2005) Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 105(3):1094–1101. doi:10.1182/blood-2004-06-2315 PubMedCrossRef Berger M, Bergers G, Arnold B, Hammerling GJ, Ganss R (2005) Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 105(3):1094–1101. doi:10.​1182/​blood-2004-06-2315 PubMedCrossRef
8.
go back to reference Bondjers C, Kalen M, Hellstrom M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C (2003) Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162(3):721–729PubMedCentralPubMedCrossRef Bondjers C, Kalen M, Hellstrom M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C (2003) Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162(3):721–729PubMedCentralPubMedCrossRef
9.
10.
go back to reference Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH (2003) Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. Faseb J 17(3):440–442PubMed Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH (2003) Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. Faseb J 17(3):440–442PubMed
11.
go back to reference Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedCrossRef Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedCrossRef
13.
go back to reference Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499. doi:10.1038/ncomms1508 PubMedCrossRef Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499. doi:10.​1038/​ncomms1508 PubMedCrossRef
16.
go back to reference Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60(1):55–69PubMedCrossRef Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60(1):55–69PubMedCrossRef
18.
go back to reference Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development (Cambridge, England) 128(7):1059–1068 Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development (Cambridge, England) 128(7):1059–1068
20.
21.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science (New York, NY) 330(6005):841–845. doi:10.1126/science.1194637 CrossRef Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science (New York, NY) 330(6005):841–845. doi:10.​1126/​science.​1194637 CrossRef
25.
go back to reference Gregersen R, Christensen T, Lehrmann E, Diemer NH, Finsen B (2001) Focal cerebral ischemia induces increased myelin basic protein and growth-associated protein-43 gene transcription in peri-infarct areas in the rat brain. Exp Brain Res Experimentelle Hirnforschung 138(3):384–392CrossRef Gregersen R, Christensen T, Lehrmann E, Diemer NH, Finsen B (2001) Focal cerebral ischemia induces increased myelin basic protein and growth-associated protein-43 gene transcription in peri-infarct areas in the rat brain. Exp Brain Res Experimentelle Hirnforschung 138(3):384–392CrossRef
26.
go back to reference Gregersen R, Lambertsen K, Finsen B (2000) Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20(1):53–65PubMedCrossRef Gregersen R, Lambertsen K, Finsen B (2000) Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20(1):53–65PubMedCrossRef
28.
go back to reference Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60. doi:10.1038/nature13165 PubMedCrossRef Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60. doi:10.​1038/​nature13165 PubMedCrossRef
31.
go back to reference Jeynes B (1985) Reactions of granular pericytes in a rabbit cerebrovascular ischemia model. Stroke: J Cereb Circ 16(1):121–125CrossRef Jeynes B (1985) Reactions of granular pericytes in a rabbit cerebrovascular ischemia model. Stroke: J Cereb Circ 16(1):121–125CrossRef
32.
go back to reference Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi:10.1038/nn.3318 PubMedCrossRef Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi:10.​1038/​nn.​3318 PubMedCrossRef
33.
go back to reference Kokovay E, Li L, Cunningham LA (2006) Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab 26(4):545–555PubMedCrossRef Kokovay E, Li L, Cunningham LA (2006) Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab 26(4):545–555PubMedCrossRef
36.
go back to reference Lalancette-Hebert M, Swarup V, Beaulieu JM, Bohacek I, Abdelhamid E, Weng YC, Sato S, Kriz J (2012) Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci 32(30):10383–10395. doi:10.1523/JNEUROSCI.1498-12.2012 PubMedCrossRef Lalancette-Hebert M, Swarup V, Beaulieu JM, Bohacek I, Abdelhamid E, Weng YC, Sato S, Kriz J (2012) Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci 32(30):10383–10395. doi:10.​1523/​JNEUROSCI.​1498-12.​2012 PubMedCrossRef
37.
go back to reference Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M, Nielsen HH, Dalmau I, Diemer NH, Dagnaes-Hansen F, Johansen FF, Keating A, Finsen B (2011) Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 70(6):481–494. doi:10.1097/NEN.0b013e31821db3aa PubMedCrossRef Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M, Nielsen HH, Dalmau I, Diemer NH, Dagnaes-Hansen F, Johansen FF, Keating A, Finsen B (2011) Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 70(6):481–494. doi:10.​1097/​NEN.​0b013e31821db3aa​ PubMedCrossRef
39.
go back to reference Nisancioglu MH, Mahoney WM Jr, Kimmel DD, Schwartz SM, Betsholtz C, Genove G (2008) Generation and characterization of rgs5 mutant mice. Mol Cell Biol 28(7):2324–2331PubMedCentralPubMedCrossRef Nisancioglu MH, Mahoney WM Jr, Kimmel DD, Schwartz SM, Betsholtz C, Genove G (2008) Generation and characterization of rgs5 mutant mice. Mol Cell Biol 28(7):2324–2331PubMedCentralPubMedCrossRef
40.
go back to reference Özen I, Boix J, Paul G (2012) Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? Clin Transl Med 1(1:30). doi:10.1186/2001-1326-1-30 Özen I, Boix J, Paul G (2012) Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? Clin Transl Med 1(1:30). doi:10.​1186/​2001-1326-1-30
41.
go back to reference Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222(2):218–227. doi:10.1002/dvdy.1200 PubMedCrossRef Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222(2):218–227. doi:10.​1002/​dvdy.​1200 PubMedCrossRef
42.
go back to reference Ozerdem U, Monosov E, Stallcup WB (2002) NG2 proteoglycan expression by pericytes in pathological microvasculature. Microvasc Res 63(1):129–134PubMedCrossRef Ozerdem U, Monosov E, Stallcup WB (2002) NG2 proteoglycan expression by pericytes in pathological microvasculature. Microvasc Res 63(1):129–134PubMedCrossRef
43.
go back to reference Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renstrom E, Svensson M, Haegerstrand A, Brundin P (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7(4):e35577. doi:10.1371/journal.pone.0035577 PubMedCentralPubMedCrossRef Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renstrom E, Svensson M, Haegerstrand A, Brundin P (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7(4):e35577. doi:10.​1371/​journal.​pone.​0035577 PubMedCentralPubMedCrossRef
44.
go back to reference Perego C, Fumagalli S, De Simoni MG (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflam 8:174. doi:10.1186/1742-2094-8-174 CrossRef Perego C, Fumagalli S, De Simoni MG (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflam 8:174. doi:10.​1186/​1742-2094-8-174 CrossRef
47.
go back to reference Schlingemann RO, Rietveld FJ, de Waal RM, Ferrone S, Ruiter DJ (1990) Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol 136(6):1393–1405PubMedCentralPubMed Schlingemann RO, Rietveld FJ, de Waal RM, Ferrone S, Ruiter DJ (1990) Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol 136(6):1393–1405PubMedCentralPubMed
48.
go back to reference Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science (New York, NY) 336(6077):86–90. doi:10.1126/science.1219179 CrossRef Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science (New York, NY) 336(6077):86–90. doi:10.​1126/​science.​1219179 CrossRef
49.
go back to reference Sims DE (1991) Recent advances in pericyte biology—implications for health and disease. Can J Cardiol 7(10):431–443PubMed Sims DE (1991) Recent advances in pericyte biology—implications for health and disease. Can J Cardiol 7(10):431–443PubMed
50.
go back to reference Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science (New York, NY) 322(5901):583–586. doi:10.1126/science.1156232 CrossRef Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science (New York, NY) 322(5901):583–586. doi:10.​1126/​science.​1156232 CrossRef
Metadata
Title
Brain pericytes acquire a microglial phenotype after stroke
Authors
Ilknur Özen
Tomas Deierborg
Kenichi Miharada
Thomas Padel
Elisabet Englund
Guillem Genové
Gesine Paul
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Acta Neuropathologica / Issue 3/2014
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-014-1295-x

Other articles of this Issue 3/2014

Acta Neuropathologica 3/2014 Go to the issue