Skip to main content
Top
Published in: Acta Neuropathologica 3/2013

01-03-2013 | Review

Evolving neurobiology of tuberous sclerosis complex

Author: Peter B. Crino

Published in: Acta Neuropathologica | Issue 3/2013

Login to get access

Abstract

Over the past decade, there have been numerous advances in our understanding of the molecular pathogenesis of tuberous sclerosis complex (TSC). Following the identification of the TSC1 and TSC2 genes, a link to regulatory control of the mammalian target of rapamycin (mTOR) signaling pathway has paved the way for new therapeutic interventions, and now even approved therapies for TSC. Gene identification has permitted establishment of cell lines and conditional knockout mouse strains to assay how abnormalities in brain structure lead to enhanced excitability, seizures, cognitive disabilities, and other neuropsychological disorders in TSC. Furthermore, work in in vitro systems and analysis of rodent models and human tissue has allowed investigators to study how brain lesions form in TSC. Evolving questions over the next decade include understanding the high clinical variability of TSC, defining why there is a lack of clear genotype–phenotype correlations, and identifying biomarkers for prognosis and stratification. The study of TSC has in many ways reflected a paradigm “bench-to-bedside” success story that serves as a model of many other neurological disorders.
Literature
1.
go back to reference Anderl S, Freeland M, Kwiatkowski DJ, Goto J (2011) Therapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex. Hum Mol Genet 20:4597–4604PubMedCrossRef Anderl S, Freeland M, Kwiatkowski DJ, Goto J (2011) Therapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex. Hum Mol Genet 20:4597–4604PubMedCrossRef
2.
go back to reference Au KS, Williams AT, Roach ES et al (2007) Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med. 9:88–100PubMedCrossRef Au KS, Williams AT, Roach ES et al (2007) Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med. 9:88–100PubMedCrossRef
3.
go back to reference Baybis M, Yu J, Lee A, Golden JA, Weiner H, McKhann G II, Aronica E, Crino PB (2004) Activation of the mTOR cascade distinguishes cortical tubers from focal cortical dysplasia. Ann Neurol 56:478–487PubMedCrossRef Baybis M, Yu J, Lee A, Golden JA, Weiner H, McKhann G II, Aronica E, Crino PB (2004) Activation of the mTOR cascade distinguishes cortical tubers from focal cortical dysplasia. Ann Neurol 56:478–487PubMedCrossRef
4.
go back to reference Bissler JJ, McCormack FX, Young LR et al (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358:140–151PubMedCrossRef Bissler JJ, McCormack FX, Young LR et al (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358:140–151PubMedCrossRef
5.
go back to reference Boer K, Troost D, Timmermans W, Gorter JA, Spliet WG, Nellist M, Jansen F, Aronica E (2008) Cellular localization of metabotropic glutamate receptors in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Neuroscience 156:203–215PubMedCrossRef Boer K, Troost D, Timmermans W, Gorter JA, Spliet WG, Nellist M, Jansen F, Aronica E (2008) Cellular localization of metabotropic glutamate receptors in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Neuroscience 156:203–215PubMedCrossRef
6.
go back to reference Boer K, Crino PB, Gorter JA, Nellist M, Jansen FE, Spliet WG, van Rijen PC, Wittink FR, Breit TM, Troost D, Wadman WJ, Aronica E (2010) Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol 20:704–719PubMedCrossRef Boer K, Crino PB, Gorter JA, Nellist M, Jansen FE, Spliet WG, van Rijen PC, Wittink FR, Breit TM, Troost D, Wadman WJ, Aronica E (2010) Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol 20:704–719PubMedCrossRef
7.
go back to reference Boer K, Troost D, Jansen F, Nellist M, van den Ouweland AM, Geurts JJ, Spliet WG, Crino P, Aronica E (2008) Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology 28:577–590PubMed Boer K, Troost D, Jansen F, Nellist M, van den Ouweland AM, Geurts JJ, Spliet WG, Crino P, Aronica E (2008) Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology 28:577–590PubMed
8.
go back to reference Carson RP, Van Nielen DL, Winzenburger PA, Ess KC (2012) Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol Dis 45:369–380PubMedCrossRef Carson RP, Van Nielen DL, Winzenburger PA, Ess KC (2012) Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol Dis 45:369–380PubMedCrossRef
9.
go back to reference Cepeda C, André VM, Yamazaki I, Hauptman JS, Chen JY, Vinters HV et al (2010) Comparative study of cellular and synaptic abnormalities in brain tissue samples from pediatric tuberous sclerosis complex and cortical dysplasia type II. Epilepsia 51(Suppl 3):160–165PubMedCrossRef Cepeda C, André VM, Yamazaki I, Hauptman JS, Chen JY, Vinters HV et al (2010) Comparative study of cellular and synaptic abnormalities in brain tissue samples from pediatric tuberous sclerosis complex and cortical dysplasia type II. Epilepsia 51(Suppl 3):160–165PubMedCrossRef
10.
go back to reference Chan JA, Zhang H, Roberts PS et al (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242PubMed Chan JA, Zhang H, Roberts PS et al (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242PubMed
11.
go back to reference Choi YJ, Di Nardo A, Kramvis I et al (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22:2485–2495PubMedCrossRef Choi YJ, Di Nardo A, Kramvis I et al (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22:2485–2495PubMedCrossRef
12.
go back to reference Crino PB, Trojanowski JQ, Dichter MA, Eberwine J (1996) Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. Proc Natl Acad Sci USA. 93(24):14152–14157PubMedCrossRef Crino PB, Trojanowski JQ, Dichter MA, Eberwine J (1996) Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. Proc Natl Acad Sci USA. 93(24):14152–14157PubMedCrossRef
13.
go back to reference Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356PubMedCrossRef Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356PubMedCrossRef
14.
go back to reference Crino PB, Aronica E, Baltuch G, Nathanson KL (2010) Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 74:1716–1723PubMedCrossRef Crino PB, Aronica E, Baltuch G, Nathanson KL (2010) Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 74:1716–1723PubMedCrossRef
15.
go back to reference Dabora SL, Jozwiak S, Franz DN et al (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80PubMedCrossRef Dabora SL, Jozwiak S, Franz DN et al (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80PubMedCrossRef
16.
go back to reference Dabora SL, Franz DN, Ashwal S et al (2011) Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF-D levels decrease. PLoS ONE 6:e23379PubMedCrossRef Dabora SL, Franz DN, Ashwal S et al (2011) Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF-D levels decrease. PLoS ONE 6:e23379PubMedCrossRef
17.
go back to reference Davies DM, Johnson SR, Tattersfield AE et al (2008) Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med 358:200–203PubMedCrossRef Davies DM, Johnson SR, Tattersfield AE et al (2008) Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med 358:200–203PubMedCrossRef
18.
go back to reference Davies DM, de Vries PJ, Johnson SR et al (2011) Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res 17:4071–4081PubMedCrossRef Davies DM, de Vries PJ, Johnson SR et al (2011) Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res 17:4071–4081PubMedCrossRef
19.
go back to reference Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD (2012) TBC1D7 Is a third subunit of the TSC1–TSC2 complex upstream of mTORC1. Mol Cell 47:535–546PubMedCrossRef Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD (2012) TBC1D7 Is a third subunit of the TSC1–TSC2 complex upstream of mTORC1. Mol Cell 47:535–546PubMedCrossRef
20.
go back to reference Ehninger D, Han S, Shilyansky C et al (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848PubMedCrossRef Ehninger D, Han S, Shilyansky C et al (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848PubMedCrossRef
21.
go back to reference Ehninger D, Silva AJ (2010) Rapamycin for treating tuberous sclerosis and autism spectrum disorders. Trends Mol Med. 17:78–87PubMedCrossRef Ehninger D, Silva AJ (2010) Rapamycin for treating tuberous sclerosis and autism spectrum disorders. Trends Mol Med. 17:78–87PubMedCrossRef
22.
go back to reference Ellisen LW (2005) Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Cell Cycle 4:1500–1502PubMedCrossRef Ellisen LW (2005) Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Cell Cycle 4:1500–1502PubMedCrossRef
23.
go back to reference European Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315CrossRef European Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315CrossRef
24.
go back to reference Feliciano DM, Su T, Lopez J, Platel JC, Bordey A (2011) Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J Clin Invest 121:1596–1607PubMedCrossRef Feliciano DM, Su T, Lopez J, Platel JC, Bordey A (2011) Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J Clin Invest 121:1596–1607PubMedCrossRef
25.
go back to reference Fukutani Y, Yasuda M, Saitoh C, Kyoya S, Kobayashi K, Miyazu K, Nakamura I (1992) An autopsy case of tuberous sclerosis. Histological and immunohistochemical study. Histol Histopathol 7:709–714PubMed Fukutani Y, Yasuda M, Saitoh C, Kyoya S, Kobayashi K, Miyazu K, Nakamura I (1992) An autopsy case of tuberous sclerosis. Histological and immunohistochemical study. Histol Histopathol 7:709–714PubMed
26.
go back to reference Gallagher A, Grant EP, Madan N et al (2010) MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol 257:1373–1381PubMedCrossRef Gallagher A, Grant EP, Madan N et al (2010) MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol 257:1373–1381PubMedCrossRef
27.
go back to reference Gao X, Pan D (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 15:1383–1392PubMedCrossRef Gao X, Pan D (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 15:1383–1392PubMedCrossRef
28.
go back to reference Goorden SM, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y (2007) Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann Neurol 62:648–655PubMedCrossRef Goorden SM, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y (2007) Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann Neurol 62:648–655PubMedCrossRef
29.
go back to reference Goto J, Talos DM, Klein P et al (2011) Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci USA. 108(45):E1070–E1079PubMedCrossRef Goto J, Talos DM, Klein P et al (2011) Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci USA. 108(45):E1070–E1079PubMedCrossRef
30.
go back to reference Grajkowska W, Kotulska K, Jurkiewicz E, Roszkowski M, Daszkiewicz P, Jóźwiak S, Matyja E (2011) Subependymal giant cell astrocytomas with atypical histological features mimicking malignant gliomas. Folia Neuropathol 49:39–46PubMed Grajkowska W, Kotulska K, Jurkiewicz E, Roszkowski M, Daszkiewicz P, Jóźwiak S, Matyja E (2011) Subependymal giant cell astrocytomas with atypical histological features mimicking malignant gliomas. Folia Neuropathol 49:39–46PubMed
31.
go back to reference Green AJ, Smith M, Yates JR (1994) Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet 6:193–196PubMedCrossRef Green AJ, Smith M, Yates JR (1994) Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet 6:193–196PubMedCrossRef
32.
go back to reference Henske EP, Scheithauer BW, Short MP et al (1996) Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 59:400–406PubMed Henske EP, Scheithauer BW, Short MP et al (1996) Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 59:400–406PubMed
33.
go back to reference Henske EP, Wessner LL, Golden J et al (1997) Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol 151:1639–1647PubMed Henske EP, Wessner LL, Golden J et al (1997) Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol 151:1639–1647PubMed
34.
go back to reference Hirose T, Scheithauer BW, Lopes MB, Gerber HA, Altermatt HJ, Hukee MJ, VandenBerg SR, Charlesworth JC (1995) Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropath 90:387–399PubMedCrossRef Hirose T, Scheithauer BW, Lopes MB, Gerber HA, Altermatt HJ, Hukee MJ, VandenBerg SR, Charlesworth JC (1995) Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropath 90:387–399PubMedCrossRef
35.
go back to reference Hsu PP, Kang SA, Rameseder J et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–1322PubMedCrossRef Hsu PP, Kang SA, Rameseder J et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–1322PubMedCrossRef
36.
go back to reference Huang J, Manning BD (2008) The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190PubMedCrossRef Huang J, Manning BD (2008) The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190PubMedCrossRef
37.
go back to reference Huang J, Wu S, Wu CL, Manning BD (2009) Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res 69:6107–6114PubMedCrossRef Huang J, Wu S, Wu CL, Manning BD (2009) Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res 69:6107–6114PubMedCrossRef
38.
go back to reference Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128PubMedCrossRef Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128PubMedCrossRef
39.
go back to reference Jansen LA, Uhlmann EJ, Crino PB, Gutmann DH, Wong M (2005) Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1 deficient astrocytes. Epilepsia 46:1871–1880PubMedCrossRef Jansen LA, Uhlmann EJ, Crino PB, Gutmann DH, Wong M (2005) Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1 deficient astrocytes. Epilepsia 46:1871–1880PubMedCrossRef
40.
go back to reference Jones AC, Daniells CE, Snell RG et al (1997) Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum Mol Genet 6:2155–2161PubMedCrossRef Jones AC, Daniells CE, Snell RG et al (1997) Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum Mol Genet 6:2155–2161PubMedCrossRef
41.
go back to reference Jones AC, Shyamsundar MM, Thomas MW et al (1999) Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 64:1305–1315PubMedCrossRef Jones AC, Shyamsundar MM, Thomas MW et al (1999) Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 64:1305–1315PubMedCrossRef
42.
go back to reference Kobayashi T, Minowa O, Sugitani Y et al (2001) A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci USA. 98:8762–8767PubMedCrossRef Kobayashi T, Minowa O, Sugitani Y et al (2001) A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci USA. 98:8762–8767PubMedCrossRef
43.
go back to reference Krueger DA, Care MM, Holland K et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811PubMedCrossRef Krueger DA, Care MM, Holland K et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811PubMedCrossRef
44.
go back to reference Kyin R, Hua Y, Baybis M, Scheithauer B, Kolson D, Uhlmann E, Gutmann D, Crino PB (2001) Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. Am J Pathol 159:1541–1554PubMedCrossRef Kyin R, Hua Y, Baybis M, Scheithauer B, Kolson D, Uhlmann E, Gutmann D, Crino PB (2001) Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. Am J Pathol 159:1541–1554PubMedCrossRef
45.
go back to reference Lamb RF, Roy C, Diefenbach TJ et al (2000) The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol 2:281–287PubMedCrossRef Lamb RF, Roy C, Diefenbach TJ et al (2000) The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol 2:281–287PubMedCrossRef
46.
go back to reference Larson Y, Liu J, Stevens PD et al (2010) Tuberous sclerosis complex 2 (TSC2) regulates cell migration and polarity through activation of CDC42 and RAC1. J Biol Chem 285:24987–24998PubMedCrossRef Larson Y, Liu J, Stevens PD et al (2010) Tuberous sclerosis complex 2 (TSC2) regulates cell migration and polarity through activation of CDC42 and RAC1. J Biol Chem 285:24987–24998PubMedCrossRef
47.
go back to reference Lee A, Maldonado M, Baybis M, Walsh CA, Scheithauer B, Yeung R, Parent J, Weiner HL, Crino PB (2003) Markers of cellular proliferation are expressed in cortical tubers. Ann Neurol 53(5):668–673PubMedCrossRef Lee A, Maldonado M, Baybis M, Walsh CA, Scheithauer B, Yeung R, Parent J, Weiner HL, Crino PB (2003) Markers of cellular proliferation are expressed in cortical tubers. Ann Neurol 53(5):668–673PubMedCrossRef
48.
go back to reference Lee-Jones L, Aligianis I, Davies PA, Puga A, Farndon PA, Stemmer-Rachamimov A, Ramesh V, Sampson JR (2004) Sacrococcygeal chordomas in patients with tuberous sclerosis complex show somatic loss of TSC1 or TSC2. Genes Chromosomes Cancer 41:80–85PubMedCrossRef Lee-Jones L, Aligianis I, Davies PA, Puga A, Farndon PA, Stemmer-Rachamimov A, Ramesh V, Sampson JR (2004) Sacrococcygeal chordomas in patients with tuberous sclerosis complex show somatic loss of TSC1 or TSC2. Genes Chromosomes Cancer 41:80–85PubMedCrossRef
49.
go back to reference Lopes MB, Altermatt HJ, Scheithauer BW, Shepherd CW, VandenBerg SR (1996) Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol 91:368–375PubMedCrossRef Lopes MB, Altermatt HJ, Scheithauer BW, Shepherd CW, VandenBerg SR (1996) Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol 91:368–375PubMedCrossRef
50.
go back to reference Ma J, Meng Y, Kwiatkowski DJ et al (2010) Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Investig 120:103–114PubMedCrossRef Ma J, Meng Y, Kwiatkowski DJ et al (2010) Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Investig 120:103–114PubMedCrossRef
51.
go back to reference Maldonado M, Baybis M, Newman D, Kolson DL, Chen W, McKhann G 2nd, Gutmann DH, Crino PB (2003) Expression of ICAM-1, TNF-alpha, NFkappaB, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis 14:279–290PubMedCrossRef Maldonado M, Baybis M, Newman D, Kolson DL, Chen W, McKhann G 2nd, Gutmann DH, Crino PB (2003) Expression of ICAM-1, TNF-alpha, NFkappaB, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis 14:279–290PubMedCrossRef
52.
go back to reference Marcotte L, Aronica E, Baybis M, Crino PB (2012) Cytoarchitectural alterations are widespread in cerebral cortex in tuberous sclerosis complex. Acta Neuropathol 123:685–693PubMedCrossRef Marcotte L, Aronica E, Baybis M, Crino PB (2012) Cytoarchitectural alterations are widespread in cerebral cortex in tuberous sclerosis complex. Acta Neuropathol 123:685–693PubMedCrossRef
53.
go back to reference McMaster ML, Goldstein AM, Parry DM (2011) Clinical features distinguish childhood chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general paediatric population. J Med Genet 48:444–449PubMedCrossRef McMaster ML, Goldstein AM, Parry DM (2011) Clinical features distinguish childhood chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general paediatric population. J Med Genet 48:444–449PubMedCrossRef
54.
go back to reference Meikle L, Talos DM, Onda H et al (2007) A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27:5546–5558PubMedCrossRef Meikle L, Talos DM, Onda H et al (2007) A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27:5546–5558PubMedCrossRef
55.
go back to reference Miyata H, Chiang AC, Vinters HV (2004) Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann Neurol 56(4):510–519PubMedCrossRef Miyata H, Chiang AC, Vinters HV (2004) Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann Neurol 56(4):510–519PubMedCrossRef
56.
57.
go back to reference Napolioni V, Moavero R, Curatolo P (2009) Recent advances in neurobiology of tuberous sclerosis complex. Brain Dev 31:104–113PubMedCrossRef Napolioni V, Moavero R, Curatolo P (2009) Recent advances in neurobiology of tuberous sclerosis complex. Brain Dev 31:104–113PubMedCrossRef
58.
go back to reference Nie D, Di Nardo A, Han JM et al (2010) Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci 13:163–172PubMedCrossRef Nie D, Di Nardo A, Han JM et al (2010) Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci 13:163–172PubMedCrossRef
59.
go back to reference Niida Y, Stemmer-Rachamimov AO, Logrip M, Tapon D, Perez R, Kwiatkowski DJ, Sims K, MacCollin M, Louis DN, Ramesh V (2001) Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 69:493–503PubMedCrossRef Niida Y, Stemmer-Rachamimov AO, Logrip M, Tapon D, Perez R, Kwiatkowski DJ, Sims K, MacCollin M, Louis DN, Ramesh V (2001) Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 69:493–503PubMedCrossRef
60.
61.
go back to reference Onda H, Crino PB, Zhang H, Murphey RD, Rastelli L, Gould Rothberg BE, Kwiatkowski DJ (2002) Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol Cell Neurosci 21(4):561–574PubMedCrossRef Onda H, Crino PB, Zhang H, Murphey RD, Rastelli L, Gould Rothberg BE, Kwiatkowski DJ (2002) Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol Cell Neurosci 21(4):561–574PubMedCrossRef
62.
go back to reference Orlova KA, Tsai V, Baybis M et al (2010) Early progenitor cell marker expression distinguishes type II from type I focal cortical dysplasias. J Neuropath Exp Neurol 69(8):850–863PubMedCrossRef Orlova KA, Tsai V, Baybis M et al (2010) Early progenitor cell marker expression distinguishes type II from type I focal cortical dysplasias. J Neuropath Exp Neurol 69(8):850–863PubMedCrossRef
63.
go back to reference Osborne JP, Fryer A, Webb D (1991) Epidemiology of tuberous sclerosis. Ann NY Acad Sci 615:125–127PubMedCrossRef Osborne JP, Fryer A, Webb D (1991) Epidemiology of tuberous sclerosis. Ann NY Acad Sci 615:125–127PubMedCrossRef
64.
go back to reference Park SH, Pepkowitz SH, Kerfoot C et al (1997) Tuberous sclerosis in a 20-week gestation fetus: immunohistochemical study. Acta Neuropathol 94:180–186PubMedCrossRef Park SH, Pepkowitz SH, Kerfoot C et al (1997) Tuberous sclerosis in a 20-week gestation fetus: immunohistochemical study. Acta Neuropathol 94:180–186PubMedCrossRef
65.
go back to reference Parker WE, Orlova KA, Heuer GG et al (2011) Enhanced epidermal growth factor, hepatocyte growth factor, and vascular endothelial growth factor expression in tuberous sclerosis complex. Am J Pathol 178:296–305PubMedCrossRef Parker WE, Orlova KA, Heuer GG et al (2011) Enhanced epidermal growth factor, hepatocyte growth factor, and vascular endothelial growth factor expression in tuberous sclerosis complex. Am J Pathol 178:296–305PubMedCrossRef
66.
go back to reference Peterson TR, Laplante M, Thoreen CC et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886PubMedCrossRef Peterson TR, Laplante M, Thoreen CC et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886PubMedCrossRef
67.
go back to reference Potter CJ, Huang H, Xu T (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105:357–368PubMedCrossRef Potter CJ, Huang H, Xu T (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105:357–368PubMedCrossRef
68.
go back to reference Prabowo AS, Anink JJ, Lammens M et al (2013) Fetal Brain Lesions in Tuberous Sclerosis Complex: TORC1 Activation and Inflammation. Brain Pathol 23:45–49 Prabowo AS, Anink JJ, Lammens M et al (2013) Fetal Brain Lesions in Tuberous Sclerosis Complex: TORC1 Activation and Inflammation. Brain Pathol 23:45–49
69.
go back to reference Qin W, Chan JA, Vinters HV et al (2010) Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol 20:1096–1105PubMedCrossRef Qin W, Chan JA, Vinters HV et al (2010) Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol 20:1096–1105PubMedCrossRef
70.
go back to reference Qin W, Kozlowski P, Taillon BE et al (2010) Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum Genet 127:573–582PubMedCrossRef Qin W, Kozlowski P, Taillon BE et al (2010) Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum Genet 127:573–582PubMedCrossRef
71.
go back to reference Reith RM, Way S, McKenna J 3rd, Haines K, Gambello MJ (2011) Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration. Neurobiol Dis 43:113–122PubMedCrossRef Reith RM, Way S, McKenna J 3rd, Haines K, Gambello MJ (2011) Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration. Neurobiol Dis 43:113–122PubMedCrossRef
72.
go back to reference Ridler K, Bullmore ET, De Vries PJ et al (2001) Widespread anatomical abnormalities of grey and white matter structure in tuberous sclerosis. Psychol Med 31:1437–1446PubMedCrossRef Ridler K, Bullmore ET, De Vries PJ et al (2001) Widespread anatomical abnormalities of grey and white matter structure in tuberous sclerosis. Psychol Med 31:1437–1446PubMedCrossRef
73.
go back to reference Roach ES, Smith M, Huttenlocher P et al (1992) Diagnostic criteria: tuberous sclerosis complex. Report of the Diagnostic Criteria Committee of the National Tuberous Sclerosis Association. J Child Neurol 7:221–224PubMedCrossRef Roach ES, Smith M, Huttenlocher P et al (1992) Diagnostic criteria: tuberous sclerosis complex. Report of the Diagnostic Criteria Committee of the National Tuberous Sclerosis Association. J Child Neurol 7:221–224PubMedCrossRef
74.
go back to reference Roach ES, Gomez MR, Northrup H (1998) Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol 3:624–628CrossRef Roach ES, Gomez MR, Northrup H (1998) Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol 3:624–628CrossRef
75.
go back to reference Rosner M, Hengstschlager M (2004) Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J Biol Chem 279:48707–48715PubMedCrossRef Rosner M, Hengstschlager M (2004) Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J Biol Chem 279:48707–48715PubMedCrossRef
76.
go back to reference Rüegg S, Baybis M, Juul H, Dichter M, Crino PB (2007) Effects of rapamycin on gene expression, morphology, and electrophysiological properties of rat hippocampal neurons. Epilepsy Res 77:85–92PubMedCrossRef Rüegg S, Baybis M, Juul H, Dichter M, Crino PB (2007) Effects of rapamycin on gene expression, morphology, and electrophysiological properties of rat hippocampal neurons. Epilepsy Res 77:85–92PubMedCrossRef
77.
go back to reference Sancak O, Nellist M, Goedbloed M et al (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 13:731–741PubMedCrossRef Sancak O, Nellist M, Goedbloed M et al (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 13:731–741PubMedCrossRef
78.
go back to reference Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603PubMedCrossRef Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603PubMedCrossRef
79.
go back to reference Sato N, Koinuma J, Ito T et al (2010) Activation of an oncogenic TBC1D7 (TBC1 domain family, member 7) protein in pulmonary carcinogenesis. Genes Chromosomes Cancer 49:353–367PubMed Sato N, Koinuma J, Ito T et al (2010) Activation of an oncogenic TBC1D7 (TBC1 domain family, member 7) protein in pulmonary carcinogenesis. Genes Chromosomes Cancer 49:353–367PubMed
80.
go back to reference Sharma M, Ralte A, Arora R, Santosh V, Shankar SK, Sarkar C (2004) Subependymal giant cell astrocytoma: a clinicopathological study of 23 cases with special emphasis on proliferative markers and expression of p53 and retinoblastoma gene proteins. Pathology 36:139–144PubMedCrossRef Sharma M, Ralte A, Arora R, Santosh V, Shankar SK, Sarkar C (2004) Subependymal giant cell astrocytoma: a clinicopathological study of 23 cases with special emphasis on proliferative markers and expression of p53 and retinoblastoma gene proteins. Pathology 36:139–144PubMedCrossRef
81.
go back to reference Sosunov AA, Wu X, Weiner HL, Mikell CB, Goodman RR, Crino PB, McKhann GM 2nd (2008) Tuberous sclerosis: a primary pathology of astrocytes? Epilepsia 49(Suppl 2):53–62PubMedCrossRef Sosunov AA, Wu X, Weiner HL, Mikell CB, Goodman RR, Crino PB, McKhann GM 2nd (2008) Tuberous sclerosis: a primary pathology of astrocytes? Epilepsia 49(Suppl 2):53–62PubMedCrossRef
82.
go back to reference Takahashi DK, Dinday MT, Barbaro NM, Baraban SC (2004) Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia 45:1525–1530PubMedCrossRef Takahashi DK, Dinday MT, Barbaro NM, Baraban SC (2004) Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia 45:1525–1530PubMedCrossRef
83.
go back to reference Takei H, Adesina AM, Powell SZ (2009) Solitary subependymal giant cell astrocytoma incidentally found at autopsy in an elderly woman without tuberous sclerosis complex. Neuropathology 29:181–186PubMedCrossRef Takei H, Adesina AM, Powell SZ (2009) Solitary subependymal giant cell astrocytoma incidentally found at autopsy in an elderly woman without tuberous sclerosis complex. Neuropathology 29:181–186PubMedCrossRef
84.
go back to reference Talos DM, Kwiatkowski DJ, Cordero K, Black PM, Jensen FE (2008) Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers. Ann Neurol 63:454–465PubMedCrossRef Talos DM, Kwiatkowski DJ, Cordero K, Black PM, Jensen FE (2008) Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers. Ann Neurol 63:454–465PubMedCrossRef
85.
go back to reference Tavazoie SF, Alvarez VA, Ridenour DA et al (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8:1727–1734PubMedCrossRef Tavazoie SF, Alvarez VA, Ridenour DA et al (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8:1727–1734PubMedCrossRef
86.
go back to reference Tee AR, Manning BD, Roux PP et al (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–1268PubMedCrossRef Tee AR, Manning BD, Roux PP et al (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–1268PubMedCrossRef
87.
go back to reference Tsai V, Parker WE, Orlova KA et al (2012) Fetal Brain mTOR Signaling Activation in Tuberous Sclerosis Complex. Cereb Cortex. October 18 [Epub Ahead of print] Tsai V, Parker WE, Orlova KA et al (2012) Fetal Brain mTOR Signaling Activation in Tuberous Sclerosis Complex. Cereb Cortex. October 18 [Epub Ahead of print]
88.
go back to reference Tsai PT, Hull C, Chu Y et al (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–651. doi:10.1038/nature11310 Tsai PT, Hull C, Chu Y et al (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–651. doi:10.​1038/​nature11310
89.
go back to reference Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J, Kucharska J, Grajkowska W, Roszkowski M, Jozwiak S, Kaminska B (2010) Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176(4):1878–1890PubMedCrossRef Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J, Kucharska J, Grajkowska W, Roszkowski M, Jozwiak S, Kaminska B (2010) Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176(4):1878–1890PubMedCrossRef
90.
go back to reference Uhlmann EJ, Wong M, Baldwin RL et al (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296PubMedCrossRef Uhlmann EJ, Wong M, Baldwin RL et al (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296PubMedCrossRef
91.
go back to reference van Slegtenhorst M, de Hoogt R, Hermans C et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808PubMedCrossRef van Slegtenhorst M, de Hoogt R, Hermans C et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808PubMedCrossRef
92.
go back to reference van Slegtenhorst M, Verhoef S, Tempelaars A et al (1999) Mutational spectrum of the TSC1 gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype-phenotype correlation. J Med Genet 36:285–289PubMed van Slegtenhorst M, Verhoef S, Tempelaars A et al (1999) Mutational spectrum of the TSC1 gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype-phenotype correlation. J Med Genet 36:285–289PubMed
93.
go back to reference Vaughn J, Hagiwara M, Katz J, Roth J, Devinsky O, Weiner H, Milla S (2012) MRI Characterization and longitudinal study of focal cerebellar lesions in a young tuberous sclerosis cohort. AJNR Am J Neuroradiol. 2012 Sep 6 [Epub ahead of print] Vaughn J, Hagiwara M, Katz J, Roth J, Devinsky O, Weiner H, Milla S (2012) MRI Characterization and longitudinal study of focal cerebellar lesions in a young tuberous sclerosis cohort. AJNR Am J Neuroradiol. 2012 Sep 6 [Epub ahead of print]
94.
go back to reference Way SW, McKenna J 3rd, Mietzsch U et al (2009) Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet 18:1252–1265PubMedCrossRef Way SW, McKenna J 3rd, Mietzsch U et al (2009) Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet 18:1252–1265PubMedCrossRef
95.
go back to reference White R, Hua Y, Lynch DR, Scheitauer B, Crino PB (2001) Differential transcription of neurotransmitter receptor subunits and uptake sites in giant cells and dysplastic neurons in cortical tubers. Ann Neurol 49:67–78PubMedCrossRef White R, Hua Y, Lynch DR, Scheitauer B, Crino PB (2001) Differential transcription of neurotransmitter receptor subunits and uptake sites in giant cells and dysplastic neurons in cortical tubers. Ann Neurol 49:67–78PubMedCrossRef
96.
go back to reference Wong M, Ess K, Uhlmann EJ et al (2003) Impaired astrocyte glutamate transport in a mouse epilepsy model of tuberous sclerosis complex. Ann Neurol 54:251–256PubMedCrossRef Wong M, Ess K, Uhlmann EJ et al (2003) Impaired astrocyte glutamate transport in a mouse epilepsy model of tuberous sclerosis complex. Ann Neurol 54:251–256PubMedCrossRef
97.
98.
go back to reference Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRef Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRef
99.
go back to reference Xu L, Zeng LH, Wong M (2009) Impaired astrocyte gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. Neurobiol Dis 34:291–299PubMedCrossRef Xu L, Zeng LH, Wong M (2009) Impaired astrocyte gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. Neurobiol Dis 34:291–299PubMedCrossRef
100.
go back to reference Yang Q, Inoki K, Kim E, Guan KL (2006) TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc Natl Acad Sci USA 103:6811–6816PubMedCrossRef Yang Q, Inoki K, Kim E, Guan KL (2006) TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc Natl Acad Sci USA 103:6811–6816PubMedCrossRef
101.
go back to reference Yu Y, Yoon SO, Poulogiannis G et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–1326PubMedCrossRef Yu Y, Yoon SO, Poulogiannis G et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–1326PubMedCrossRef
102.
go back to reference Yuan E, Tsai PT, Greene-Colozzi E, Sahin M, Kwiatkowski DJ, Malinowska IA (2012) Graded loss of tuberin in an allelic series of brain models of TSC correlates with survival, and biochemical, histological and behavioral features. Hum Mol Genet 21:4286–4300PubMedCrossRef Yuan E, Tsai PT, Greene-Colozzi E, Sahin M, Kwiatkowski DJ, Malinowska IA (2012) Graded loss of tuberin in an allelic series of brain models of TSC correlates with survival, and biochemical, histological and behavioral features. Hum Mol Genet 21:4286–4300PubMedCrossRef
103.
go back to reference Zeng Z, dos Sarbassov D, Samudio IJ et al (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109:3509–3512PubMedCrossRef Zeng Z, dos Sarbassov D, Samudio IJ et al (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109:3509–3512PubMedCrossRef
104.
go back to reference Zeng LH, Xu L, Gutmann DH, Wong M (2008) Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63:444–453PubMedCrossRef Zeng LH, Xu L, Gutmann DH, Wong M (2008) Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63:444–453PubMedCrossRef
105.
go back to reference Zeng LH, Rensing NR, Zhang B et al (2011) Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet 20:445–454PubMedCrossRef Zeng LH, Rensing NR, Zhang B et al (2011) Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet 20:445–454PubMedCrossRef
106.
go back to reference Zeng LH, Bero AW, Zhang B, Holtzman DM, Wong M (2010) Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of tuberous sclerosis complex. Neurobiol Dis 37(3):764–771PubMedCrossRef Zeng LH, Bero AW, Zhang B, Holtzman DM, Wong M (2010) Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of tuberous sclerosis complex. Neurobiol Dis 37(3):764–771PubMedCrossRef
107.
go back to reference Zhou J, Shrikhande G, Xu J et al (2011) Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev 25:1595–1600PubMedCrossRef Zhou J, Shrikhande G, Xu J et al (2011) Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev 25:1595–1600PubMedCrossRef
Metadata
Title
Evolving neurobiology of tuberous sclerosis complex
Author
Peter B. Crino
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 3/2013
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-013-1085-x

Other articles of this Issue 3/2013

Acta Neuropathologica 3/2013 Go to the issue