Skip to main content
Top
Published in: Acta Neuropathologica 6/2011

Open Access 01-06-2011 | Original Paper

Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms

Authors: Maike Hartlage-Rübsamen, Markus Morawski, Alexander Waniek, Carsten Jäger, Ulrike Zeitschel, Birgit Koch, Holger Cynis, Stephan Schilling, Reinhard Schliebs, Hans-Ulrich Demuth, Steffen Roßner

Published in: Acta Neuropathologica | Issue 6/2011

Login to get access

Abstract

In the hippocampal formation of Alzheimer’s disease (AD) patients, both focal and diffuse deposits of Aβ peptides appear in a subregion- and layer-specific manner. Recently, pyroglutamate (pGlu or pE)-modified Aβ peptides were identified as a highly pathogenic and seeding Aβ peptide species. Since the pE modification is catalyzed by glutaminyl cyclase (QC) this enzyme emerged as a novel pharmacological target for AD therapy. Here, we reveal the role of QC in the formation of different types of hippocampal pE-Aβ aggregates. First, we demonstrate that both, focal and diffuse pE-Aβ deposits are present in defined layers of the AD hippocampus. While the focal type of pE-Aβ aggregates was found to be associated with the somata of QC-expressing interneurons, the diffuse type was not. To address this discrepancy, the hippocampus of amyloid precursor protein transgenic mice was analysed. Similar to observations made in AD, focal (i.e. core-containing) pE-Aβ deposits originating from QC-positive neurons and diffuse pE-Aβ deposits not associated with QC were detected in Tg2576 mouse hippocampus. The hippocampal layers harbouring diffuse pE-Aβ deposits receive multiple afferents from QC-rich neuronal populations of the entorhinal cortex and locus coeruleus. This might point towards a mechanism in which pE-Aβ and/or QC are being released from projection neurons at hippocampal synapses. Indeed, there are a number of reports demonstrating the reduction of diffuse, but not of focal, Aβ deposits in hippocampus after deafferentation experiments. Moreover, we demonstrate in neurons by live cell imaging and by enzymatic activity assays that QC is secreted in a constitutive and regulated manner. Thus, it is concluded that hippocampal pE-Aβ plaques may develop through at least two different mechanisms: intracellularly at sites of somatic QC activity as well as extracellularly through seeding at terminal fields of QC expressing projection neurons.
Appendix
Available only for authorised users
Literature
1.
go back to reference Acero G, Manutcharian K, Vasilevko V et al (2009) Immunodominant epitope and properties of pyroglutamate-modified Aβ-specific antibodies produced in rabbits. J Neuroimmunol 213:39–46PubMedCrossRef Acero G, Manutcharian K, Vasilevko V et al (2009) Immunodominant epitope and properties of pyroglutamate-modified Aβ-specific antibodies produced in rabbits. J Neuroimmunol 213:39–46PubMedCrossRef
2.
go back to reference Armstrong RA (1998) β-Amyloid plaques: stages in life history or independent origin? Dement Geriatr Cogn Disord 9:227–238PubMedCrossRef Armstrong RA (1998) β-Amyloid plaques: stages in life history or independent origin? Dement Geriatr Cogn Disord 9:227–238PubMedCrossRef
3.
go back to reference Beach TG, Sue LI, Walker DG et al (2008) The Sun Health Research Institute Brain Donation Program: description and experience, 1987–2007. Cell Tissue Bank 9:229–245PubMedCrossRef Beach TG, Sue LI, Walker DG et al (2008) The Sun Health Research Institute Brain Donation Program: description and experience, 1987–2007. Cell Tissue Bank 9:229–245PubMedCrossRef
4.
go back to reference Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9:182–194PubMedCrossRef Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9:182–194PubMedCrossRef
5.
go back to reference Blackstad TM, Fuxe K, Hökfelt T (1967) Noradrenaline nerve terminals in the hippocampal region of the rat and guinea pig. Z Zellforsch 78:463–473PubMedCrossRef Blackstad TM, Fuxe K, Hökfelt T (1967) Noradrenaline nerve terminals in the hippocampal region of the rat and guinea pig. Z Zellforsch 78:463–473PubMedCrossRef
6.
go back to reference Böckers TM, Kreutz MR, Pohl T (1995) Glutaminyl-cyclase expression in the bovine/porcine hypothalamus and pituitary. J Neuroendocrinol 7:445–453PubMedCrossRef Böckers TM, Kreutz MR, Pohl T (1995) Glutaminyl-cyclase expression in the bovine/porcine hypothalamus and pituitary. J Neuroendocrinol 7:445–453PubMedCrossRef
7.
go back to reference Braak H, Braak E (1991) Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol 81:261–268PubMedCrossRef Braak H, Braak E (1991) Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol 81:261–268PubMedCrossRef
8.
go back to reference Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 81:239–259CrossRef Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 81:239–259CrossRef
9.
go back to reference Busby WH, Quackenbush GE, Humm J, Youngblood WW, Kizer JS (1987) An enzyme(s) that converts glutaminyl-peptides into pyroglutamyl-peptides. J Biol Chem 262:8532–8536PubMed Busby WH, Quackenbush GE, Humm J, Youngblood WW, Kizer JS (1987) An enzyme(s) that converts glutaminyl-peptides into pyroglutamyl-peptides. J Biol Chem 262:8532–8536PubMed
10.
go back to reference Buxbaum JD, Thinakaran G, Koliatsos V et al (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18:9629–9637PubMed Buxbaum JD, Thinakaran G, Koliatsos V et al (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18:9629–9637PubMed
11.
go back to reference Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA (2008) Transient intraneuronal Aβ rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1 mice. Acta Neuropathol 116:647–655PubMedCrossRef Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA (2008) Transient intraneuronal Aβ rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1 mice. Acta Neuropathol 116:647–655PubMedCrossRef
12.
go back to reference Crain BC, Burger PC (1988) The laminar distribution of neuritic plaques in the fascia dentata of patients with Alzheimer’s disease. Acta Neuropathol 76:87–93PubMedCrossRef Crain BC, Burger PC (1988) The laminar distribution of neuritic plaques in the fascia dentata of patients with Alzheimer’s disease. Acta Neuropathol 76:87–93PubMedCrossRef
13.
go back to reference Cynis H, Schilling S, Bodnar M et al (2006) Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim Biophys Acta 1764:1618–1625PubMed Cynis H, Schilling S, Bodnar M et al (2006) Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim Biophys Acta 1764:1618–1625PubMed
14.
go back to reference Cynis H, Scheel E, Saido TC, Schilling S, Demuth HU (2008) Amyloidogenic processing of amyloid precursor protein: evidence of a pivotal role of glutaminyl cyclase in generation of pyroglutamate-modified amyloid-beta. Biochemistry 47:7405–7413PubMedCrossRef Cynis H, Scheel E, Saido TC, Schilling S, Demuth HU (2008) Amyloidogenic processing of amyloid precursor protein: evidence of a pivotal role of glutaminyl cyclase in generation of pyroglutamate-modified amyloid-beta. Biochemistry 47:7405–7413PubMedCrossRef
15.
go back to reference D’Arrigo C, Tabaton M, Perico A (2009) N-terminal truncated pyroglutamyl beta amyloid peptide Abetapy3–42 shows a faster aggregation kinetics than the full-length Abeta1–42. Biopolymers 91:861–873PubMedCrossRef D’Arrigo C, Tabaton M, Perico A (2009) N-terminal truncated pyroglutamyl beta amyloid peptide Abetapy3–42 shows a faster aggregation kinetics than the full-length Abeta1–42. Biopolymers 91:861–873PubMedCrossRef
16.
go back to reference Dickson TC, Vickers JC (2001) The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neuroscience 105:99–107PubMedCrossRef Dickson TC, Vickers JC (2001) The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neuroscience 105:99–107PubMedCrossRef
17.
go back to reference Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36PubMedCrossRef Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36PubMedCrossRef
18.
go back to reference Duvernoy HM (2005) The human hippocampus. Functional anatomy, vascularization and serial sections with MRI, 3rd edn. Springer, Berlin Duvernoy HM (2005) The human hippocampus. Functional anatomy, vascularization and serial sections with MRI, 3rd edn. Springer, Berlin
19.
go back to reference Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19PubMedCrossRef Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19PubMedCrossRef
20.
go back to reference Fischer WH, Spiess J (1987) Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc Natl Acad Sci USA 84:3628–3632PubMedCrossRef Fischer WH, Spiess J (1987) Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc Natl Acad Sci USA 84:3628–3632PubMedCrossRef
21.
22.
go back to reference Fukutani Y, Cairns NJ, Shiozawa M et al (2000) Neuronal loss and neurofibrillary degeneration in the hippocampal cortex in late-onset sporadic Alzheimer’s disease. Psychiatry Clin Neurosci 54:523–529PubMedCrossRef Fukutani Y, Cairns NJ, Shiozawa M et al (2000) Neuronal loss and neurofibrillary degeneration in the hippocampal cortex in late-onset sporadic Alzheimer’s disease. Psychiatry Clin Neurosci 54:523–529PubMedCrossRef
23.
go back to reference Haass C (2004) Take five-BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J 23:483–488PubMedCrossRef Haass C (2004) Take five-BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J 23:483–488PubMedCrossRef
24.
go back to reference Harris JA, Devidze N, Verret L et al (2010) Transsynaptic progression of amyloid-b-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68:428–441PubMedCrossRef Harris JA, Devidze N, Verret L et al (2010) Transsynaptic progression of amyloid-b-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68:428–441PubMedCrossRef
25.
go back to reference Hartlage-Rübsamen M, Staffa K, Waniek A et al (2009) Developmental expression and subcellular localization of glutaminyl cyclase in mouse brain. Int J Dev Neurosci 27:825–835PubMedCrossRef Hartlage-Rübsamen M, Staffa K, Waniek A et al (2009) Developmental expression and subcellular localization of glutaminyl cyclase in mouse brain. Int J Dev Neurosci 27:825–835PubMedCrossRef
26.
go back to reference He W, Barrow CJ (1999) The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides found in senile plaque have greater beta-sheet forming and aggregation propensities in vitro than full-length A beta. Biochemistry 38:10871–10877PubMedCrossRef He W, Barrow CJ (1999) The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides found in senile plaque have greater beta-sheet forming and aggregation propensities in vitro than full-length A beta. Biochemistry 38:10871–10877PubMedCrossRef
27.
go back to reference Heider M, Schliebs R, Roßner S, Bigl V (1997) Basal forebrain cholinergic immunolesion by 192IgG-saporin: evidence for a presynaptic location of subpopulations of alpha 2- and beta-adrenergic as well as 5-HT2A receptors on cortical cholinergic terminals. Neurochem Res 22:957–966PubMedCrossRef Heider M, Schliebs R, Roßner S, Bigl V (1997) Basal forebrain cholinergic immunolesion by 192IgG-saporin: evidence for a presynaptic location of subpopulations of alpha 2- and beta-adrenergic as well as 5-HT2A receptors on cortical cholinergic terminals. Neurochem Res 22:957–966PubMedCrossRef
28.
go back to reference Lazarov O, Lee M, Peterson DA, Sisodia SS (2002) Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 22:9785–9793PubMed Lazarov O, Lee M, Peterson DA, Sisodia SS (2002) Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 22:9785–9793PubMed
29.
go back to reference Loy R, Koziell DA, Lindsey JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699–710PubMedCrossRef Loy R, Koziell DA, Lindsey JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699–710PubMedCrossRef
30.
go back to reference Mai JK, Assheuer J, Paxinos G (2004) Atlas of the human brain. Academic Press, San Diego Mai JK, Assheuer J, Paxinos G (2004) Atlas of the human brain. Academic Press, San Diego
31.
go back to reference McColl G, Roberts BR, Gunn AP et al (2009) The Caenorhabditis elegans Aβ1–42 model of Alzheimer’s disease predominantly expresses Aβ3–42. J Biol Chem 284:22697–22702PubMedCrossRef McColl G, Roberts BR, Gunn AP et al (2009) The Caenorhabditis elegans Aβ1–42 model of Alzheimer’s disease predominantly expresses Aβ3–42. J Biol Chem 284:22697–22702PubMedCrossRef
32.
go back to reference Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5:1–10PubMedCrossRef Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5:1–10PubMedCrossRef
33.
go back to reference Meyer-Luehmann M, Stalder M, Herzig MC et al (2003) Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 6:370–377PubMedCrossRef Meyer-Luehmann M, Stalder M, Herzig MC et al (2003) Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 6:370–377PubMedCrossRef
34.
go back to reference Miravalle L, Calero M, Takao M, Roher AE, Ghetti B, Vidal R (2005) Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44:10810–10821PubMedCrossRef Miravalle L, Calero M, Takao M, Roher AE, Ghetti B, Vidal R (2005) Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44:10810–10821PubMedCrossRef
35.
go back to reference Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486PubMed Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486PubMed
36.
go back to reference Morawski M, Hartlage-Rübsamen M, Jäger C et al (2010) Distinct glutaminyl cyclase expression in Edinger–Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Aβ pathology in Alzheimer’s disease. Acta Neuropathol 120:195–207PubMedCrossRef Morawski M, Hartlage-Rübsamen M, Jäger C et al (2010) Distinct glutaminyl cyclase expression in Edinger–Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Aβ pathology in Alzheimer’s disease. Acta Neuropathol 120:195–207PubMedCrossRef
37.
go back to reference Muresan Z, Muresan V (2008) Seeding neuritic plaques from the distance: a possible role for brainstem neurons in the development of Alzheimer’s disease. Neurodegener Dis 5:250–253PubMedCrossRef Muresan Z, Muresan V (2008) Seeding neuritic plaques from the distance: a possible role for brainstem neurons in the development of Alzheimer’s disease. Neurodegener Dis 5:250–253PubMedCrossRef
38.
go back to reference Piccini A, Russo C, Gliozzi A et al (2005) Beta-amyloid is different in normal aging and in Alzheimer’s disease. J Biol Chem 280:34186–34192PubMedCrossRef Piccini A, Russo C, Gliozzi A et al (2005) Beta-amyloid is different in normal aging and in Alzheimer’s disease. J Biol Chem 280:34186–34192PubMedCrossRef
39.
go back to reference Pohl T, Zimmer M, Mugele K, Spiess J (1991) Primary structure and functional expression of a glutaminyl cyclase. Proc Natl Acad Sci USA 88:10059–10063PubMedCrossRef Pohl T, Zimmer M, Mugele K, Spiess J (1991) Primary structure and functional expression of a glutaminyl cyclase. Proc Natl Acad Sci USA 88:10059–10063PubMedCrossRef
40.
go back to reference Portelius E, Bogdanovic N, Gustavsson MK et al (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120:185–193PubMedCrossRef Portelius E, Bogdanovic N, Gustavsson MK et al (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120:185–193PubMedCrossRef
41.
go back to reference Russo C, Schettini G, Saido TC et al (2000) Presenilin-1 mutations in Alzheimer’s disease. Nature 405:531–532PubMedCrossRef Russo C, Schettini G, Saido TC et al (2000) Presenilin-1 mutations in Alzheimer’s disease. Nature 405:531–532PubMedCrossRef
42.
go back to reference Russo C, Violani E, Salis S et al (2002) Pyroglutamate-modified amyloid beta-peptides—AbetaN3(pE)—strongly affect cultured neuron and astrocyte survival. J Neurochem 82:1480–1489PubMedCrossRef Russo C, Violani E, Salis S et al (2002) Pyroglutamate-modified amyloid beta-peptides—AbetaN3(pE)—strongly affect cultured neuron and astrocyte survival. J Neurochem 82:1480–1489PubMedCrossRef
43.
go back to reference Saido TC (1998) Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging 19:S69–S75PubMedCrossRef Saido TC (1998) Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging 19:S69–S75PubMedCrossRef
44.
go back to reference Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, Abeta N3(pE), in senile plaques. Neuron 14:457–466PubMedCrossRef Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, Abeta N3(pE), in senile plaques. Neuron 14:457–466PubMedCrossRef
45.
go back to reference Saido TC, Yamao H, Iwatsubo T, Kawashima S (1996) Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 215:173–176PubMedCrossRef Saido TC, Yamao H, Iwatsubo T, Kawashima S (1996) Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 215:173–176PubMedCrossRef
46.
go back to reference Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384PubMedCrossRef Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384PubMedCrossRef
47.
go back to reference Schilling S, Hoffmann T, Manhart S, Hoffmann M, Demuth HU (2004) Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS Lett 563:191–196PubMedCrossRef Schilling S, Hoffmann T, Manhart S, Hoffmann M, Demuth HU (2004) Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS Lett 563:191–196PubMedCrossRef
48.
go back to reference Schilling S, Lauber T, Schaupp M et al (2006) On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45:12393–12399PubMedCrossRef Schilling S, Lauber T, Schaupp M et al (2006) On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45:12393–12399PubMedCrossRef
49.
go back to reference Schilling S, Zeitschel U, Hoffmann T et al (2008) Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat Med 14:1106–1111PubMedCrossRef Schilling S, Zeitschel U, Hoffmann T et al (2008) Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat Med 14:1106–1111PubMedCrossRef
50.
go back to reference Schilling S, Appl T, Hoffmann T et al (2008) Inhibition of glutaminyl cyclase prevents pGlu-Aβ formation after intracortical/hippocampal microinjection in vivo/in situ. J Neurochem 106:1225–1236PubMedCrossRef Schilling S, Appl T, Hoffmann T et al (2008) Inhibition of glutaminyl cyclase prevents pGlu-Aβ formation after intracortical/hippocampal microinjection in vivo/in situ. J Neurochem 106:1225–1236PubMedCrossRef
51.
go back to reference Schlenzig D, Manhart S, Cinar Y et al (2009) Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 48:7072–7078PubMedCrossRef Schlenzig D, Manhart S, Cinar Y et al (2009) Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 48:7072–7078PubMedCrossRef
52.
go back to reference Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584PubMedCrossRef Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584PubMedCrossRef
53.
go back to reference Sheng JG, Price DL, Koliatsos VE (2002) Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Aβ amyloidosis. J Neurosci 22:9794–9799PubMed Sheng JG, Price DL, Koliatsos VE (2002) Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Aβ amyloidosis. J Neurosci 22:9794–9799PubMed
54.
go back to reference Su Y, Ni B (1998) Selective deposition of amyloid-beta protein in the entorhinal-dentate projection of a transgenic mouse model of Alzheimer’s disease. J Neurosci Res 53:177–186PubMedCrossRef Su Y, Ni B (1998) Selective deposition of amyloid-beta protein in the entorhinal-dentate projection of a transgenic mouse model of Alzheimer’s disease. J Neurosci Res 53:177–186PubMedCrossRef
55.
go back to reference Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800PubMed Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800PubMed
56.
go back to reference van Groen T, Liu L, Ikonen S, Kadish I (2003) Diffuse amyloid deposition, but not plaque number, is reduced in amyloid precursor protein/presenilin 1 double-transgenic mice by pathway lesions. Neuroscience 119:1185–1197PubMedCrossRef van Groen T, Liu L, Ikonen S, Kadish I (2003) Diffuse amyloid deposition, but not plaque number, is reduced in amyloid precursor protein/presenilin 1 double-transgenic mice by pathway lesions. Neuroscience 119:1185–1197PubMedCrossRef
57.
go back to reference van Groen T, Miettinen P, Kadish I (2003) The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus 13:133–149PubMedCrossRef van Groen T, Miettinen P, Kadish I (2003) The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus 13:133–149PubMedCrossRef
58.
go back to reference von Gunten A, Kövari E, Bussière T et al (2006) Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in Alzheimer’s disease. Neurobiol Aging 27:270–277CrossRef von Gunten A, Kövari E, Bussière T et al (2006) Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in Alzheimer’s disease. Neurobiol Aging 27:270–277CrossRef
59.
go back to reference Wirths O, Breyhan H, Cynis H, Schilling S, Demuth HU, Bayer TA (2009) Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 118:487–496PubMedCrossRef Wirths O, Breyhan H, Cynis H, Schilling S, Demuth HU, Bayer TA (2009) Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 118:487–496PubMedCrossRef
60.
go back to reference Wirths O, Bethge T, Marcello A et al (2010) Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases. J Neural Transm 117:85–96PubMedCrossRef Wirths O, Bethge T, Marcello A et al (2010) Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases. J Neural Transm 117:85–96PubMedCrossRef
61.
go back to reference Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res 163:43–61PubMedCrossRef Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res 163:43–61PubMedCrossRef
Metadata
Title
Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms
Authors
Maike Hartlage-Rübsamen
Markus Morawski
Alexander Waniek
Carsten Jäger
Ulrike Zeitschel
Birgit Koch
Holger Cynis
Stephan Schilling
Reinhard Schliebs
Hans-Ulrich Demuth
Steffen Roßner
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 6/2011
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-011-0806-2

Other articles of this Issue 6/2011

Acta Neuropathologica 6/2011 Go to the issue