Skip to main content
Top
Published in: Acta Neuropathologica 6/2009

01-12-2009 | Original Paper

The dorsal root ganglion in Friedreich’s ataxia

Authors: Arnulf H. Koeppen, Jennifer A. Morral, Ashley N. Davis, Jiang Qian, Simone V. Petrocine, Mitchell D. Knutson, Walter M. Gibson, Matthew J. Cusack, Danhong Li

Published in: Acta Neuropathologica | Issue 6/2009

Login to get access

Abstract

Atrophy of dorsal root ganglia (DRG) and thinning of dorsal roots (DR) are hallmarks of Friedreich’s ataxia (FRDA). Many previous authors also emphasized the selective vulnerability of larger neurons in DRG and thicker myelinated DR axons. This report is based on a systematic reexamination of DRG, DR and ventral roots (VR) in 19 genetically confirmed cases of FRDA by immunocytochemistry and single- and double-label immunofluorescence with antibodies to specific proteins of myelin, neurons and axons; S-100α as a marker of satellite and Schwann cells; laminin; and the iron-responsive proteins ferritin, mitochondrial ferritin, and ferroportin. Confocal images of axons and myelin allowed the quantitative analysis of fiber density and size, and the extent of DR and VR myelination. A novel technology, high-definition X-ray fluorescence (HDXRF) of polyethylene glycol-embedded fixed tissue, was used to “map” iron in DRG. Unfixed frozen tissue of DRG in three cases was available for the chemical assay of total iron. Proliferation of S-100α-positive satellite cells accompanied neuronal destruction in DRG of all FRDA cases. Double-label visualization of peripheral nerve myelin protein 22 and phosphorylated neurofilament protein confirmed the known loss of large myelinated DR fibers, but quantitative fiber counts per unit area did not change. The ratio of myelinated to neurofilament-positive fibers in DR rose significantly from 0.55 to 0.66. In VR of FRDA patients, fiber counts and degree of myelination did not differ from normal. Pooled histograms of axonal perimeters disclosed a shift to thinner fibers in DR, but also a modest excess of smaller axons in VR. Schwann cell cytoplasm in DR of FRDA was depleted while laminin reaction product remained prominent. Numerous small axons clustered around fewer Schwann cells. Ferritin in normal DRG localized to satellite cells, and proliferation of these cells in FRDA caused wide rims of reaction product about degenerating nerve cells. Mitochondrial ferritin was not detectable. Ferroportin was present in the cytoplasm of normal satellite cells and neurons, and in large axons of DR and VR. In FRDA, some DRG neurons lost their cytoplasmic ferroportin immunoreactivity, whereas the cytoplasm of satellite cells remained ferroportin positive. Ferroportin in DR axons disappeared in parallel with atrophy of large fibers. HDXRF of DRG detected regional and diffuse increases in iron fluorescence that matched ferritin expression in satellite cells. The observations support the conclusions that satellite cells and DRG neurons are affected by iron dysmetabolism; and that regeneration and inappropriate myelination of small axons in DR are characteristic of the disease.
Literature
1.
go back to reference Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912CrossRefPubMed Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912CrossRefPubMed
2.
go back to reference Bielschowsky M (1934) Zur Kenntnis des Friedreich-Komplexes. Zeitschr ges Neurol Psychiat 150:373–404CrossRef Bielschowsky M (1934) Zur Kenntnis des Friedreich-Komplexes. Zeitschr ges Neurol Psychiat 150:373–404CrossRef
3.
go back to reference Campanella A, Rovelli E, Santambrogio P, Cozzi A, Taroni F, Levi S (2009) Mitochondrial ferritin limits oxidative damage regulating mitochondrial availability: hypothesis for a protective role in Friedreich ataxia. Hum Mol Genet 18:1–11CrossRefPubMed Campanella A, Rovelli E, Santambrogio P, Cozzi A, Taroni F, Levi S (2009) Mitochondrial ferritin limits oxidative damage regulating mitochondrial availability: hypothesis for a protective role in Friedreich ataxia. Hum Mol Genet 18:1–11CrossRefPubMed
4.
go back to reference Campuzano V, Montermini L, Moltò MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427CrossRefPubMed Campuzano V, Montermini L, Moltò MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427CrossRefPubMed
5.
go back to reference Caruso G, Santoro Perretti A et al (1983) Friedreich’s ataxia: electrophysiological and histological findings. Acta Neurol Scand 67:26–40CrossRefPubMed Caruso G, Santoro Perretti A et al (1983) Friedreich’s ataxia: electrophysiological and histological findings. Acta Neurol Scand 67:26–40CrossRefPubMed
6.
7.
go back to reference Davis MD, Kaufman S, Milstein S (1986) A modified ferrozine method for the measurement of enzyme-bound iron. J Biochem Biophys Methods 13:39–45CrossRefPubMed Davis MD, Kaufman S, Milstein S (1986) A modified ferrozine method for the measurement of enzyme-bound iron. J Biochem Biophys Methods 13:39–45CrossRefPubMed
8.
go back to reference Feltri ML, Wrabetz L (2005) Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10:128–143CrossRefPubMed Feltri ML, Wrabetz L (2005) Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10:128–143CrossRefPubMed
9.
go back to reference Friedreich N (1877) Ueber Ataxie mit besonderer Berücksichtigung der hereditären Formen. Nachtrag. Virchows Arch Pathol Anat Physiol Klin Med 70:140–152CrossRef Friedreich N (1877) Ueber Ataxie mit besonderer Berücksichtigung der hereditären Formen. Nachtrag. Virchows Arch Pathol Anat Physiol Klin Med 70:140–152CrossRef
11.
go back to reference Gonzalez-Martinez T, Perez-Piñera P, Díaz-Esnal B, Vega JA (2003) S-100 proteins in the human peripheral nervous system. Microsc Res Tech 60:633–638CrossRefPubMed Gonzalez-Martinez T, Perez-Piñera P, Díaz-Esnal B, Vega JA (2003) S-100 proteins in the human peripheral nervous system. Microsc Res Tech 60:633–638CrossRefPubMed
12.
go back to reference Hughes JT, Brownell B, Hewer RL (1968) The peripheral sensory pathway in Friedreich’s ataxia. Brain 91:803–818CrossRefPubMed Hughes JT, Brownell B, Hewer RL (1968) The peripheral sensory pathway in Friedreich’s ataxia. Brain 91:803–818CrossRefPubMed
13.
go back to reference Inoue K, Hirano A, Hasson J (1979) Friedreich’s ataxia selectively involves the large neurons of the dorsal root ganglia. Trans Am Neurol Assoc 104:75–76PubMed Inoue K, Hirano A, Hasson J (1979) Friedreich’s ataxia selectively involves the large neurons of the dorsal root ganglia. Trans Am Neurol Assoc 104:75–76PubMed
14.
go back to reference Jitpimolmard S, Small J, King RHM et al (1993) The sensory neuropathy of Friedreich’s ataxia: an autopsy study of a case with prolonged survival. Acta Neuropathol 86:29–35CrossRefPubMed Jitpimolmard S, Small J, King RHM et al (1993) The sensory neuropathy of Friedreich’s ataxia: an autopsy study of a case with prolonged survival. Acta Neuropathol 86:29–35CrossRefPubMed
15.
go back to reference Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 102:1324–1328CrossRefPubMed Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 102:1324–1328CrossRefPubMed
17.
go back to reference Koeppen AH, Michael SC, Knutson MD et al (2007) The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol 114:163–173CrossRefPubMed Koeppen AH, Michael SC, Knutson MD et al (2007) The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol 114:163–173CrossRefPubMed
18.
go back to reference Koeppen AH, Michael SC, Li D et al (2008) The pathology of superficial siderosis of the central nervous system. Acta Neuropathol 116:371–382CrossRefPubMed Koeppen AH, Michael SC, Li D et al (2008) The pathology of superficial siderosis of the central nervous system. Acta Neuropathol 116:371–382CrossRefPubMed
19.
go back to reference Lamarche JB, Côté M, Lemieux B (1980) The cardiomyopathy of Friedreich’s ataxia: morphological observations in 3 cases. Can J Neurol Sci 7:389–396PubMed Lamarche JB, Côté M, Lemieux B (1980) The cardiomyopathy of Friedreich’s ataxia: morphological observations in 3 cases. Can J Neurol Sci 7:389–396PubMed
20.
go back to reference Lambrior AA (1911) Un cas de maladie de Friedreich avec autopsie. Rev Neurol 21:525–540 Lambrior AA (1911) Un cas de maladie de Friedreich avec autopsie. Rev Neurol 21:525–540
21.
go back to reference Lawson SN (1992) Morphological and biochemical cell types of sensory neurons. In: Cott SA (ed) Sensory neurons: diversity, development, and plasticity. Oxford University Press, Oxford, pp 27–59 Lawson SN (1992) Morphological and biochemical cell types of sensory neurons. In: Cott SA (ed) Sensory neurons: diversity, development, and plasticity. Oxford University Press, Oxford, pp 27–59
22.
go back to reference Lieberman AR (1976) Sensory ganglia. In: Landon DN (ed) The peripheral nerve. Chapman Hall, London, pp 188–278 Lieberman AR (1976) Sensory ganglia. In: Landon DN (ed) The peripheral nerve. Chapman Hall, London, pp 188–278
23.
go back to reference Michael S, Petrocine SV, Qian J et al (2006) Iron and iron-responsive proteins in the cardiomyopathy of Friedreich’s ataxia. Cerebellum 5:257–267CrossRefPubMed Michael S, Petrocine SV, Qian J et al (2006) Iron and iron-responsive proteins in the cardiomyopathy of Friedreich’s ataxia. Cerebellum 5:257–267CrossRefPubMed
24.
go back to reference Moos T, Nielsen TR, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740CrossRefPubMed Moos T, Nielsen TR, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740CrossRefPubMed
25.
go back to reference Morrissey TK, Kleitman N, Bunge RP (1991) Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J Neurosci 11:2433–2442PubMed Morrissey TK, Kleitman N, Bunge RP (1991) Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J Neurosci 11:2433–2442PubMed
26.
go back to reference Mott FW (1907) Case of Friedreich’s disease, with autopsy and systematic microscopical examination of the nervous system. Arch Neurol Psychiatr 3:180–200 Mott FW (1907) Case of Friedreich’s disease, with autopsy and systematic microscopical examination of the nervous system. Arch Neurol Psychiatr 3:180–200
27.
go back to reference Nageotte J (1907) Recherches expérimentales sur la morphologie des cellules et des fibres des ganglions rachidiens. Rev Neurol 15:357–368 Nageotte J (1907) Recherches expérimentales sur la morphologie des cellules et des fibres des ganglions rachidiens. Rev Neurol 15:357–368
29.
go back to reference Rice AE, Mendez MJ, Hokanson CA, Rees DC, Björkman PJ (2008) Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J Mol Biol 386:717–732CrossRef Rice AE, Mendez MJ, Hokanson CA, Rees DC, Björkman PJ (2008) Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J Mol Biol 386:717–732CrossRef
30.
go back to reference Rouault TA, Tong WH (2008) Iron–sulfur cluster biogenesis and human disease. Trends Genet 24:398–407CrossRefPubMed Rouault TA, Tong WH (2008) Iron–sulfur cluster biogenesis and human disease. Trends Genet 24:398–407CrossRefPubMed
31.
go back to reference Scarpini ES, Meola G, Baron P, Beretta S, Velicogna M, Scarlato G (1986) S-100 protein and laminin: Immunocytochemical markers for human Schwann cells in vitro. Exp Neurol 93:77–83CrossRefPubMed Scarpini ES, Meola G, Baron P, Beretta S, Velicogna M, Scarlato G (1986) S-100 protein and laminin: Immunocytochemical markers for human Schwann cells in vitro. Exp Neurol 93:77–83CrossRefPubMed
32.
go back to reference Sindou M, Quoex C, Baleydier C (1974) Fiber organization at the posterior spinal cord-rootlet junction in man. J Comp Neurol 153:15–26CrossRefPubMed Sindou M, Quoex C, Baleydier C (1974) Fiber organization at the posterior spinal cord-rootlet junction in man. J Comp Neurol 153:15–26CrossRefPubMed
33.
go back to reference Smith-Thomas LC, Fawcett JW (1989) Expression of Schwann cell markers by mammalian neural crest cells in vitro. Development 105:251–262PubMed Smith-Thomas LC, Fawcett JW (1989) Expression of Schwann cell markers by mammalian neural crest cells in vitro. Development 105:251–262PubMed
34.
go back to reference Stefansson K, Wollmann RL, Moore BW (1982) Distribution of S-100 protein outside the central nervous system. Brain Res 234:309–317CrossRefPubMed Stefansson K, Wollmann RL, Moore BW (1982) Distribution of S-100 protein outside the central nervous system. Brain Res 234:309–317CrossRefPubMed
35.
go back to reference Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res 1001:108–117CrossRefPubMed Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res 1001:108–117CrossRefPubMed
Metadata
Title
The dorsal root ganglion in Friedreich’s ataxia
Authors
Arnulf H. Koeppen
Jennifer A. Morral
Ashley N. Davis
Jiang Qian
Simone V. Petrocine
Mitchell D. Knutson
Walter M. Gibson
Matthew J. Cusack
Danhong Li
Publication date
01-12-2009
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 6/2009
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-009-0589-x

Other articles of this Issue 6/2009

Acta Neuropathologica 6/2009 Go to the issue