Skip to main content
Top
Published in: Acta Neuropathologica 2/2006

01-02-2006 | Original Paper

β-Protein/A4 deposits are not associated with hyperphosphorylated tau in somatostatin neurons in the hypothalamus of Alzheimer’s disease patients

Authors: J. A. P. van de Nes, S. Konermann, R. Nafe, D. F. Swaab

Published in: Acta Neuropathologica | Issue 2/2006

Login to get access

Abstract

With respect to the pathogenesis of Alzheimer’s disease (AD), it has been hypothesized that amorphous plaques containing β-protein/A4 (Aβ) would locally induce cytoskeletal changes, and that neurons affected by neurofibrillary tangles (NFTs) lose their neuropeptide concentration and eventually die. To test this presumed cascade of events, the hypothalami of 14 non-demented subjects (Braak 0–III) and 28 AD patients (Braak IV–VI) aged 40–98 years were selected. The subject of our study was the nucleus tuberalis lateralis (NTL), which harbors a subpopulation of somatostatinergic neurons with extensive intrinsic interconnectivity. We used Gallyas silver staining, Congo staining, single- and double-staining with monoclonal antibody AT8 and polyclonal antibody anti-Aβ, and double-immunolabeling with AT8 and anti-somatostatin1–12 with the following results: (1) Significant amounts of silver-staining NFTs were present in only three AD patients. (2) High densities of AT8-stained cytoskeletal changes were mainly found in aged, demented patients. (3) In contrast, large amounts of Aβ deposits were mainly observed in young and middle-aged (40–59 years) AD patients, and were very low or absent mainly in the older non-demented subjects and in AD patients. (4) Reduced anti-somatostatin staining was observed in the NTL of most AD patients, but anti-somatostatin/AT8 double-stained neurons were found virtually exclusively in aged AD patients. Thus, the occurrence of Aβ deposits and hyperphosphorylated tau formation in somatostatin cells are basically independent events, while decreased somatostatin staining only partly goes together with cytoskeletal changes in somatostatin cells in the NTL of AD patients. These observations cannot be explained by the amyloid cascade hypothesis.
Literature
1.
go back to reference Adlard PA, Perreau VM, Pop V, Cotman CW (2005) Voluntary exercise decreases amyloid load in a transgenic mice model of Alzheimer’s disease. J Neurosci 25:5217–4221CrossRefPubMed Adlard PA, Perreau VM, Pop V, Cotman CW (2005) Voluntary exercise decreases amyloid load in a transgenic mice model of Alzheimer’s disease. J Neurosci 25:5217–4221CrossRefPubMed
2.
go back to reference Axelson JF, Van Leeuwen FW (1990) Differential localization of estrogen receptors in various vasopressing synthesizing nuclei of the rat brain. J Neuroendocrinol 2:209–216CrossRefPubMed Axelson JF, Van Leeuwen FW (1990) Differential localization of estrogen receptors in various vasopressing synthesizing nuclei of the rat brain. J Neuroendocrinol 2:209–216CrossRefPubMed
3.
go back to reference Benoit R, Ling N, Alford B, Guillemin R (1982) Seven peptides derived form pro-somatostatin in the rat brain. Biochem Biophys Res Commun 107:944–950CrossRefPubMed Benoit R, Ling N, Alford B, Guillemin R (1982) Seven peptides derived form pro-somatostatin in the rat brain. Biochem Biophys Res Commun 107:944–950CrossRefPubMed
4.
go back to reference Benoit R, Bohlen P, Ling N, Esch F, Baird A, Ying SY, Wehrenburg WB, Guillemin R, Morrison JH, Bakhit C, Koda L, Bloom F (1984) Somatostatin-28(1–12)-like peptides. In: Patel YC, Tannenbaum GS (eds) Somatostatin. Plenum Press, New York, NY, pp 89–107 Benoit R, Bohlen P, Ling N, Esch F, Baird A, Ying SY, Wehrenburg WB, Guillemin R, Morrison JH, Bakhit C, Koda L, Bloom F (1984) Somatostatin-28(1–12)-like peptides. In: Patel YC, Tannenbaum GS (eds) Somatostatin. Plenum Press, New York, NY, pp 89–107
5.
go back to reference Benzing WC, Brady DR, Mufson EJ, Armstrong DM (1993) Evidence that transmitter-containing dystrophic neurites precede those containing paired helical filaments within senile plaques in the entorhinal cortex of nondemented elderly and Alzheimer’s disease patients. Brain Res 619:55–68CrossRefPubMed Benzing WC, Brady DR, Mufson EJ, Armstrong DM (1993) Evidence that transmitter-containing dystrophic neurites precede those containing paired helical filaments within senile plaques in the entorhinal cortex of nondemented elderly and Alzheimer’s disease patients. Brain Res 619:55–68CrossRefPubMed
6.
go back to reference Bouras C, Magistretti PJ, Morrison JH, Constantidinis J (1987) An immunohistochemical study of pro-somatostatin-derived peptides in the human brain. Neuroscience 22:781–800CrossRefPubMed Bouras C, Magistretti PJ, Morrison JH, Constantidinis J (1987) An immunohistochemical study of pro-somatostatin-derived peptides in the human brain. Neuroscience 22:781–800CrossRefPubMed
7.
go back to reference Braak H, Braak E (1991) Neuropathologic stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefPubMed Braak H, Braak E (1991) Neuropathologic stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefPubMed
8.
go back to reference Braak E, Braak H, Mandelkow E-M (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567PubMedCrossRef Braak E, Braak H, Mandelkow E-M (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567PubMedCrossRef
9.
go back to reference Braak H, Braak E (1998) Argyrophilic grain disease: frequency of occurrence in different categories and neuropathological diagnositic criteria. J Neural Transm 105:801–819CrossRefPubMed Braak H, Braak E (1998) Argyrophilic grain disease: frequency of occurrence in different categories and neuropathological diagnositic criteria. J Neural Transm 105:801–819CrossRefPubMed
10.
go back to reference Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) β-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888CrossRefPubMed Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) β-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888CrossRefPubMed
11.
go back to reference Chambers CB, Sigurdsson EM, Hejna MJ, Lorens SA, Lee JM, Muma NA (2000) Amyloid-β injection in rat amygdala alters tau protein but not mRNA expression. Exp Neurol 162:158–170CrossRefPubMed Chambers CB, Sigurdsson EM, Hejna MJ, Lorens SA, Lee JM, Muma NA (2000) Amyloid-β injection in rat amygdala alters tau protein but not mRNA expression. Exp Neurol 162:158–170CrossRefPubMed
12.
go back to reference Chan-Palay V (1986) Somatostatin immunoreactive neurons in the hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: coexistence with neuropeptide Y neurons, and effects of Alzheimer disease. J Comp Neurol 260:201–223CrossRef Chan-Palay V (1986) Somatostatin immunoreactive neurons in the hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: coexistence with neuropeptide Y neurons, and effects of Alzheimer disease. J Comp Neurol 260:201–223CrossRef
13.
go back to reference Coulter HD, Elde RP (1978) Somatostatin(SOM) radioimmunoassay and immunofluorescence in the rat hypothalamus: effects of dehydration with alcohol and fixation with aldehydes and OsO4.) Anat Rec 190:369–370 (abstract) Coulter HD, Elde RP (1978) Somatostatin(SOM) radioimmunoassay and immunofluorescence in the rat hypothalamus: effects of dehydration with alcohol and fixation with aldehydes and OsO4.) Anat Rec 190:369–370 (abstract)
14.
go back to reference Ferreira A, Lu Q, Orecchio L, Kosik KS (1997) Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar Aβ. Mol Cell Neurosci 9:93–96CrossRef Ferreira A, Lu Q, Orecchio L, Kosik KS (1997) Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar Aβ. Mol Cell Neurosci 9:93–96CrossRef
15.
go back to reference Gallyas F (1971) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19:1–8PubMed Gallyas F (1971) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19:1–8PubMed
16.
go back to reference Games D, Adams D, Allessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConiugue I, Mantoya-Zavaia M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527CrossRefPubMed Games D, Adams D, Allessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConiugue I, Mantoya-Zavaia M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527CrossRefPubMed
17.
go back to reference Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat Med 4:827–831CrossRefPubMed Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat Med 4:827–831CrossRefPubMed
18.
go back to reference Goedert M, Jakes R, Vanmechelen E (1995) Monoclonal antibody AT8 recognises tau protein phosphorylation at both serine 202 and threonine 205. Neurosci Lett 189:167–170CrossRefPubMed Goedert M, Jakes R, Vanmechelen E (1995) Monoclonal antibody AT8 recognises tau protein phosphorylation at both serine 202 and threonine 205. Neurosci Lett 189:167–170CrossRefPubMed
19.
go back to reference Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293:1491–1495CrossRefPubMed Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293:1491–1495CrossRefPubMed
20.
go back to reference Hayes TL, Cameron JL, Fernstrom JD, Lewis DA (1990) A comparative analysis of the distribution of pro-somatostatin-derived peptides in monkey and human neocortex. J Comp Neurol 303:584–599CrossRef Hayes TL, Cameron JL, Fernstrom JD, Lewis DA (1990) A comparative analysis of the distribution of pro-somatostatin-derived peptides in monkey and human neocortex. J Comp Neurol 303:584–599CrossRef
21.
go back to reference Hirano A, Zimmermann HM (1962) Alzheimer’s neurofibrillary changes: a topographical study. Arch Neurol 7:227–242PubMed Hirano A, Zimmermann HM (1962) Alzheimer’s neurofibrillary changes: a topographical study. Arch Neurol 7:227–242PubMed
22.
go back to reference Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274:99–102CrossRefPubMed Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274:99–102CrossRefPubMed
23.
go back to reference Ishii T (1966) Distribution of Alzheimer’s neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathol 6:181–187CrossRefPubMed Ishii T (1966) Distribution of Alzheimer’s neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathol 6:181–187CrossRefPubMed
24.
go back to reference Katsuno T, Morishima-Kawashima M, Saito Y, Yamanouchi H, Ishiura S, Murayama S, Ihara Y (2005) Independent accumulations of tau and amyloid β-protein in the human entorhinal cortex. Neurologist 64:687–692 Katsuno T, Morishima-Kawashima M, Saito Y, Yamanouchi H, Ishiura S, Murayama S, Ihara Y (2005) Independent accumulations of tau and amyloid β-protein in the human entorhinal cortex. Neurologist 64:687–692
25.
go back to reference Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57:230–236PubMed Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57:230–236PubMed
26.
go back to reference Koutcherov Y, Mai JK, Ashwell KWS, Paxinos G (2002) Organisation of human hypothalamus in fetal development. J Comp Neurol 423:299–318CrossRef Koutcherov Y, Mai JK, Ashwell KWS, Paxinos G (2002) Organisation of human hypothalamus in fetal development. J Comp Neurol 423:299–318CrossRef
27.
go back to reference Kremer HPH, Roos RAC, Dingjan G, Marani E, Bots GThAM (1990) Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol 49:371–382PubMedCrossRef Kremer HPH, Roos RAC, Dingjan G, Marani E, Bots GThAM (1990) Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol 49:371–382PubMedCrossRef
28.
go back to reference Kremer HPH, Swaab DF, Bots GThAM, Fisser B, Ravid R, Roos RAC (1991) The hypothalamic lateral tuberal nucleus in Alzheimer’s disease. Ann Neurol 29:279–284CrossRefPubMed Kremer HPH, Swaab DF, Bots GThAM, Fisser B, Ravid R, Roos RAC (1991) The hypothalamic lateral tuberal nucleus in Alzheimer’s disease. Ann Neurol 29:279–284CrossRefPubMed
29.
go back to reference Kremer HPH (1992) The hypothalamic lateral tuberal nucleus: normal anatomy and changes in neurological diseases. Prog Brain Res 93:249–261PubMed Kremer HPH (1992) The hypothalamic lateral tuberal nucleus: normal anatomy and changes in neurological diseases. Prog Brain Res 93:249–261PubMed
30.
go back to reference Lazarov O, Robinson J, Tang Y-P, Hairston IS, Korade-Mirnics Z, Lee VM-Y, Hersh LB, Sapolsky RB, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120:701–713CrossRefPubMed Lazarov O, Robinson J, Tang Y-P, Hairston IS, Korade-Mirnics Z, Lee VM-Y, Hersh LB, Sapolsky RB, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120:701–713CrossRefPubMed
31.
go back to reference Lee H-G, Casadesus G, Zhu X, Joseph JA, Perry G, Smith MA (2004) Perspectives on the amyloid-β cascade hypothesis. J Alzheimers Dis 6:137–145PubMed Lee H-G, Casadesus G, Zhu X, Joseph JA, Perry G, Smith MA (2004) Perspectives on the amyloid-β cascade hypothesis. J Alzheimers Dis 6:137–145PubMed
32.
go back to reference Lee H-G, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomora A, Smith MA (2005) Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol Med 11:164–169CrossRefPubMed Lee H-G, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomora A, Smith MA (2005) Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol Med 11:164–169CrossRefPubMed
33.
go back to reference Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093CrossRefPubMed Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093CrossRefPubMed
34.
go back to reference Lenders M-B, Peers M-C, Tramu G, Delacourte A, Defossez A, Petit H, Mazzuca M (1989) Dystrophic peptidergic neurites in senile plaques of Alzheimer’s disease hippocampus precede formation of paired helical filaments. Brain Res 481:344–349CrossRefPubMed Lenders M-B, Peers M-C, Tramu G, Delacourte A, Defossez A, Petit H, Mazzuca M (1989) Dystrophic peptidergic neurites in senile plaques of Alzheimer’s disease hippocampus precede formation of paired helical filaments. Brain Res 481:344–349CrossRefPubMed
35.
go back to reference Lewis J, Dickson DW, Lin W-L, Chisholm L, Corral A, Jones G, Yenn S-H, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491CrossRefPubMed Lewis J, Dickson DW, Lin W-L, Chisholm L, Corral A, Jones G, Yenn S-H, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491CrossRefPubMed
36.
go back to reference Liu R-Y, Zhou J-N, Hoogedijk WJG, van Heerikhuize J, Kamphorst W, Ummehopa UA, Hofman MA, Swaab DF (2000) Decreased vasopressin gene expression in the biological clock of Alzheimer disease patients with and without depression. J Neuropathol Exp Neurol 59:314–332PubMed Liu R-Y, Zhou J-N, Hoogedijk WJG, van Heerikhuize J, Kamphorst W, Ummehopa UA, Hofman MA, Swaab DF (2000) Decreased vasopressin gene expression in the biological clock of Alzheimer disease patients with and without depression. J Neuropathol Exp Neurol 59:314–332PubMed
37.
go back to reference Mengod G, Rigo M, Savasta M, Probst A, Palacios JM (1992) Regional distribution of neuropeptide somatostatin gene expression in the human brain, Synapse 12:62–74CrossRefPubMed Mengod G, Rigo M, Savasta M, Probst A, Palacios JM (1992) Regional distribution of neuropeptide somatostatin gene expression in the human brain, Synapse 12:62–74CrossRefPubMed
38.
go back to reference Mercken M, Vandermeeren M, Lubke U, Six J, Boons J, Van de Voorde A, Martin J-J, Gheuens J (1992) Monoclonal antibodies with selective specificity for Alzheimer tau are directed against phosphatase-sensitive epitopes. Acta Neuropathol 84:265–272CrossRefPubMed Mercken M, Vandermeeren M, Lubke U, Six J, Boons J, Van de Voorde A, Martin J-J, Gheuens J (1992) Monoclonal antibodies with selective specificity for Alzheimer tau are directed against phosphatase-sensitive epitopes. Acta Neuropathol 84:265–272CrossRefPubMed
39.
go back to reference Morrison JH, Benoit R, Magistretti PJ, Bloom FE (1983) Immunohistochemical distribution of pro-somatostatin-related peptides in cerebral cortex. Brain Res 262:344–351CrossRefPubMed Morrison JH, Benoit R, Magistretti PJ, Bloom FE (1983) Immunohistochemical distribution of pro-somatostatin-related peptides in cerebral cortex. Brain Res 262:344–351CrossRefPubMed
40.
go back to reference Mufson EJ, Benoit R, Mesulam MM (1988) Immunohistochemical evidence for a possible somatostatin-containing amygdalostriatal pathway in normal and Alzheimer’s disease brain. Brain Res 453:117–128CrossRefPubMed Mufson EJ, Benoit R, Mesulam MM (1988) Immunohistochemical evidence for a possible somatostatin-containing amygdalostriatal pathway in normal and Alzheimer’s disease brain. Brain Res 453:117–128CrossRefPubMed
41.
go back to reference Najimi M, Chigr F, Leduque P, Jordan D, Charnay Y, Chayville JA, Tohyama M, Kopp N (1989) Immunohistochemical distribution of somatostatin in the infant hypothalamus. Brain Res 483:205–220CrossRefPubMed Najimi M, Chigr F, Leduque P, Jordan D, Charnay Y, Chayville JA, Tohyama M, Kopp N (1989) Immunohistochemical distribution of somatostatin in the infant hypothalamus. Brain Res 483:205–220CrossRefPubMed
42.
go back to reference Najimi M, Jordan D, Chigr F, Champier J, Kopp N, Slama A, Bertherat J, Videau C, Epelbaum J (1991) Regional distribution of somatostatin binding sites in the human hypothalamus: a quantitative autoradiographic study. Neuroscience 40:321–335CrossRefPubMed Najimi M, Jordan D, Chigr F, Champier J, Kopp N, Slama A, Bertherat J, Videau C, Epelbaum J (1991) Regional distribution of somatostatin binding sites in the human hypothalamus: a quantitative autoradiographic study. Neuroscience 40:321–335CrossRefPubMed
43.
go back to reference Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaque and tangles: intracellular Aβ deposits and synaptic dysfunction. Neuron 39:409–421CrossRefPubMed Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaque and tangles: intracellular Aβ deposits and synaptic dysfunction. Neuron 39:409–421CrossRefPubMed
44.
go back to reference Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic mice model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070CrossRefPubMed Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic mice model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070CrossRefPubMed
45.
go back to reference Reubi JC, Cortes R, Maurer R, Probst A, Palacios JM (1986) Distribution of somatostatin receptors in the human brain; an autoradiographic study. Neuroscience 18:329–346CrossRefPubMed Reubi JC, Cortes R, Maurer R, Probst A, Palacios JM (1986) Distribution of somatostatin receptors in the human brain; an autoradiographic study. Neuroscience 18:329–346CrossRefPubMed
46.
go back to reference Romijn HJ, Van Uum JF, Emmering J, Goncharuk V, Buijs RM (1999) Colocalization of VIP with AVP in neurons of the human paraventricular, supraoptic and suprachiasmatic nucleus. Brain Res 832:47–53CrossRefPubMed Romijn HJ, Van Uum JF, Emmering J, Goncharuk V, Buijs RM (1999) Colocalization of VIP with AVP in neurons of the human paraventricular, supraoptic and suprachiasmatic nucleus. Brain Res 832:47–53CrossRefPubMed
47.
go back to reference Rudelli RD, Ambler MW, Wisniewski HM (1984) Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon. Acta Neuropathol 64:273–281CrossRefPubMed Rudelli RD, Ambler MW, Wisniewski HM (1984) Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon. Acta Neuropathol 64:273–281CrossRefPubMed
48.
go back to reference Salehi A, Van de Nes JAP, Hofman MA, Gonatas NK, Swaab DF (1995) Early cytoskeletal changes as shown by Alz-50 are not accompanied by decreased neuronal activity. Brain Res 578:29–39CrossRef Salehi A, Van de Nes JAP, Hofman MA, Gonatas NK, Swaab DF (1995) Early cytoskeletal changes as shown by Alz-50 are not accompanied by decreased neuronal activity. Brain Res 578:29–39CrossRef
49.
go back to reference Saper CB, German DC (1987) Hypothalamic pathology in Alzheimer’s disease. Neurosci Lett 74:364–370CrossRefPubMed Saper CB, German DC (1987) Hypothalamic pathology in Alzheimer’s disease. Neurosci Lett 74:364–370CrossRefPubMed
50.
go back to reference Saper CB (1990) Hypothalamus. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 389–413 Saper CB (1990) Hypothalamus. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 389–413
51.
go back to reference Schultz C, Koppers D, Sassin I, Braak E, Braak H (1998) Cytoskeletal alterations in the human tuberal hypothalamus related to argyrophilic grain disease. Acta Neuropathol 96:596–602CrossRefPubMed Schultz C, Koppers D, Sassin I, Braak E, Braak H (1998) Cytoskeletal alterations in the human tuberal hypothalamus related to argyrophilic grain disease. Acta Neuropathol 96:596–602CrossRefPubMed
52.
go back to reference Schultz C, Ghebremedhin E, Braak E, Braak H (1999) Sex-dependent cytoskeletal changes of the human hypothalamus develop independently of Alzheimer’s disease. Exp Neurol 160:186–193CrossRefPubMed Schultz C, Ghebremedhin E, Braak E, Braak H (1999) Sex-dependent cytoskeletal changes of the human hypothalamus develop independently of Alzheimer’s disease. Exp Neurol 160:186–193CrossRefPubMed
53.
go back to reference Standaert DG, Lee VM-Y, Greenberg BD, Lowery DE, Trojanowski JQ (1991) Molecular features of hypothalamic plaques in Alzheimer’s disease. Am J Pathol 139:681–691PubMed Standaert DG, Lee VM-Y, Greenberg BD, Lowery DE, Trojanowski JQ (1991) Molecular features of hypothalamic plaques in Alzheimer’s disease. Am J Pathol 139:681–691PubMed
54.
go back to reference Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B, Satlin A (1999) Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol 58:29–39PubMed Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B, Satlin A (1999) Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol 58:29–39PubMed
55.
go back to reference Swaab DF (2003) Lateral tuberal nucleus. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical Neurology, vol 79, The human hypothalamus: basic and clinical aspects, Part 1: Nuclei of the hypothalamus. Elsevier, Amsterdam, pp 263–268 Swaab DF (2003) Lateral tuberal nucleus. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical Neurology, vol 79, The human hypothalamus: basic and clinical aspects, Part 1: Nuclei of the hypothalamus. Elsevier, Amsterdam, pp 263–268
56.
go back to reference Timmers HJLM, Swaab DF, Van de Nes JAP, Kremer HPH (1996) Somatostatin1–12 immunoreactivity is decreased in the hypothalamic lateral tuberal nucleus of Huntington’s disease patients. Brain Res 728:141–148CrossRefPubMed Timmers HJLM, Swaab DF, Van de Nes JAP, Kremer HPH (1996) Somatostatin1–12 immunoreactivity is decreased in the hypothalamic lateral tuberal nucleus of Huntington’s disease patients. Brain Res 728:141–148CrossRefPubMed
57.
go back to reference Van de Nes JAP, Kamphorst W, Ravid R, Swaab DF (1993) The distribution of Alz-50 immunoreactivity in the hypothalamus and adjoining areas of Alzheimer’s disease patients. Brain 116:103–115PubMedCrossRef Van de Nes JAP, Kamphorst W, Ravid R, Swaab DF (1993) The distribution of Alz-50 immunoreactivity in the hypothalamus and adjoining areas of Alzheimer’s disease patients. Brain 116:103–115PubMedCrossRef
58.
go back to reference Van de Nes JAP, Sluiter AA, Pool CW, Kamphorst W, Ravid R, Swaab DF (1994) The monoclonal antibody Alz-50, used to reveal cytoskeletal changes in Alzheimer’s disease, also reacts with a large subpopulation of somatostatin neurons in the human hypothalamus and adjoining areas. Brain Res 655:97–109CrossRefPubMed Van de Nes JAP, Sluiter AA, Pool CW, Kamphorst W, Ravid R, Swaab DF (1994) The monoclonal antibody Alz-50, used to reveal cytoskeletal changes in Alzheimer’s disease, also reacts with a large subpopulation of somatostatin neurons in the human hypothalamus and adjoining areas. Brain Res 655:97–109CrossRefPubMed
59.
go back to reference Van de Nes JAP, Kamphorst W, Ravid R, Swaab DF (1998) Comparison of β-protein/A4 deposits and Alz-50-stained cytoskeletal changes in the hypothalamus and adjoining areas of Alzheimer’s disease patients: amorphic plaques and cytoskeletal changes occur independently. Acta Neuropathol 96:129–138CrossRefPubMed Van de Nes JAP, Kamphorst W, Ravid R, Swaab DF (1998) Comparison of β-protein/A4 deposits and Alz-50-stained cytoskeletal changes in the hypothalamus and adjoining areas of Alzheimer’s disease patients: amorphic plaques and cytoskeletal changes occur independently. Acta Neuropathol 96:129–138CrossRefPubMed
60.
go back to reference Van de Nes JAP, Sandmann-Keil D, Braak H (2002) Interstitial cells in the entorhinal region expressing somatostatin-28 immunoreactivity are susceptible to develop Alzheimer’s disease-related cytoskeletal changes. Acta Neuropathol 104:351–356PubMed Van de Nes JAP, Sandmann-Keil D, Braak H (2002) Interstitial cells in the entorhinal region expressing somatostatin-28 immunoreactivity are susceptible to develop Alzheimer’s disease-related cytoskeletal changes. Acta Neuropathol 104:351–356PubMed
Metadata
Title
β-Protein/A4 deposits are not associated with hyperphosphorylated tau in somatostatin neurons in the hypothalamus of Alzheimer’s disease patients
Authors
J. A. P. van de Nes
S. Konermann
R. Nafe
D. F. Swaab
Publication date
01-02-2006
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 2/2006
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-005-0018-8

Other articles of this Issue 2/2006

Acta Neuropathologica 2/2006 Go to the issue