Skip to main content
Top
Published in: Acta Neuropathologica 6/2004

01-12-2004 | Regular Paper

Human cerebral infarct: a proposed histopathologic classification based on 137 cases

Authors: Hernando Mena, Diego Cadavid, Elisabeth J. Rushing

Published in: Acta Neuropathologica | Issue 6/2004

Login to get access

Abstract

We studied the microscopic features of 137 cases of human cerebral infarct. In each case, the age of the lesion was determined by measuring the time elapsed between initial clinical presentation and date of surgery or death. Multiple microscopic variables were analyzed on hematoxylin and eosin-stained sections. There were 104 (76%) male and 33 (24%) female patients with a median age of 64 years. The location of the infarcts included 129 cerebral, 5 cerebellar, and 1 each in the pons, midbrain and medulla. The age of the lesions ranged from 1 day to 53 years. All lesions were single and varied from lacunes to large infarcts in the distribution of one or more cerebral arteries. Key histologic features of the proposed classification are as follows: (1) phase of acute neuronal injury (11 cases studied), age 1–2 days, characterized by the presence of neuronal changes, and spongiosis of the neuropil and absence of neuronal ferrugination, chronic inflammation, macrophages, neo-vascularization and cavitation; (2) phase of organization subdivided into: (a) phase of acute inflammation (31 cases), age 3–37 days, characterized by coagulative necrosis, and frequent acute inflammation, and (b) phase of chronic inflammation (57 cases), age 10 days–53 years, characterized by the presence or absence of coagulative necrosis, neuronal injury, red neurons, macrophages, mononuclear inflammatory cells, perivascular cuffing, cavitation, gliosis, spheroids; absence of neutrophils; and (3) phase of resorption (38 cases), age 26 days–23 years, characterized by absence of an inflammatory response. Neuronophagia is not a feature of cerebral infarcts.
Literature
1.
go back to reference Adams RD (1954) Mechanism of apoplexy as determined by clinical and pathological correlation. J Neuropathol Exp Neurol13:1–13 Adams RD (1954) Mechanism of apoplexy as determined by clinical and pathological correlation. J Neuropathol Exp Neurol13:1–13
2.
go back to reference Chuaqui R, Tapia J (1993) Histologic assessment of the age of recent brain infarcts in man. J Neuropathol Exp Neurol 52:481–489PubMed Chuaqui R, Tapia J (1993) Histologic assessment of the age of recent brain infarcts in man. J Neuropathol Exp Neurol 52:481–489PubMed
3.
go back to reference DeGirolami U, Crowell RM, Marcoux FW (1984) Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey J Neuropathol Exp Neurol 43:57–71 DeGirolami U, Crowell RM, Marcoux FW (1984) Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey J Neuropathol Exp Neurol 43:57–71
4.
go back to reference Garcia JH (1983) Ischemic injuries of the brain: morphologic evolution. Arch Pathol Lab Med 107:157–161PubMed Garcia JH (1983) Ischemic injuries of the brain: morphologic evolution. Arch Pathol Lab Med 107:157–161PubMed
5.
go back to reference Garcia JH (1992) The evolution of brain infarcts: a review. J Neuropathol Exp Neurol 51:387–393PubMed Garcia JH (1992) The evolution of brain infarcts: a review. J Neuropathol Exp Neurol 51:387–393PubMed
6.
go back to reference Garcia JH, Kamijyo Y (1974) Cerebral infarction. Evolution of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropathol Exp Neurol 33:408–421PubMed Garcia JH, Kamijyo Y (1974) Cerebral infarction. Evolution of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropathol Exp Neurol 33:408–421PubMed
7.
go back to reference Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, Chen S, Chopp M (1993) Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol142:623–635 Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, Chen S, Chopp M (1993) Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol142:623–635
8.
go back to reference Garcia JH, Liu KF, Ye ZR, Gutierrez JA (1997) Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke 28:2303–2309PubMed Garcia JH, Liu KF, Ye ZR, Gutierrez JA (1997) Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke 28:2303–2309PubMed
9.
go back to reference Hanyu S, Ito U, Hakamata Y, Nakano I (1997) Topographical analysis of cortical neuronal loss associated with disseminated selective neuronal necrosis and infarction after repeated ischemia. Brain Res 767:154–157CrossRefPubMed Hanyu S, Ito U, Hakamata Y, Nakano I (1997) Topographical analysis of cortical neuronal loss associated with disseminated selective neuronal necrosis and infarction after repeated ischemia. Brain Res 767:154–157CrossRefPubMed
10.
go back to reference Hart MN, Galloway GM, Dunn MJ (1975). Perivascular anoxia-ischemia lesions in the human brain. Neurology 25:477–482PubMed Hart MN, Galloway GM, Dunn MJ (1975). Perivascular anoxia-ischemia lesions in the human brain. Neurology 25:477–482PubMed
11.
go back to reference Ito U, Go KG, Walker JT Jr, Spatz M, Klatzo I (1976) Experimental cerebral ischemia in Mongolian gerbils III. Behaviour of the blood-brain barrier. Acta Neuropathol (Berl) 34:1–6 Ito U, Go KG, Walker JT Jr, Spatz M, Klatzo I (1976) Experimental cerebral ischemia in Mongolian gerbils III. Behaviour of the blood-brain barrier. Acta Neuropathol (Berl) 34:1–6
12.
go back to reference Ito U, Kuroiwa T, Hanyu S, Hakamata Y, Kawakami E, Nakano I, Oyanagi K (2003) Temporal profile of experimental ischemic edema after threshold amount of insult to induce infarction—ultrastructure, gravimetry and Evans’ blue extravasation. Acta Neurochir Suppl 86:131–135PubMed Ito U, Kuroiwa T, Hanyu S, Hakamata Y, Kawakami E, Nakano I, Oyanagi K (2003) Temporal profile of experimental ischemic edema after threshold amount of insult to induce infarction—ultrastructure, gravimetry and Evans’ blue extravasation. Acta Neurochir Suppl 86:131–135PubMed
13.
go back to reference Jellinger KA (2002) The pathology of ischemic-vascular dementia: an update. J Neurol Sci 203–204:153–157 Jellinger KA (2002) The pathology of ischemic-vascular dementia: an update. J Neurol Sci 203–204:153–157
14.
go back to reference Kamijyo Y, Garcia JH, Cooper J (1977) Temporary regional cerebral ischemia in the cat. A model of hemorrhagic and subcortical infarction. J Neuropathol Exp Neurol 36: 338–350PubMed Kamijyo Y, Garcia JH, Cooper J (1977) Temporary regional cerebral ischemia in the cat. A model of hemorrhagic and subcortical infarction. J Neuropathol Exp Neurol 36: 338–350PubMed
15.
go back to reference Kelly PJ, Hedley-Whyte ET, Primavera J, He J, Gonzalez RG (2001) Diffusion MRI in ischemic stroke compared to pathologically verified infarction. Neurology 56:914–920PubMed Kelly PJ, Hedley-Whyte ET, Primavera J, He J, Gonzalez RG (2001) Diffusion MRI in ischemic stroke compared to pathologically verified infarction. Neurology 56:914–920PubMed
16.
go back to reference Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl) 64:139–147 Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl) 64:139–147
17.
go back to reference Kuroiwa T, Okeda R (1994) Neuropathology of cerebral ischemia and hypoxia: recent advances in experimental studies on its pathogenesis. Pathol Int 44:171–181PubMed Kuroiwa T, Okeda R (1994) Neuropathology of cerebral ischemia and hypoxia: recent advances in experimental studies on its pathogenesis. Pathol Int 44:171–181PubMed
18.
go back to reference Love S, Barber R, Wilcock GK (2000) Neuronal death in brain infarcts in man. Neuropathol Appl Neurobiol 26:55–66CrossRefPubMed Love S, Barber R, Wilcock GK (2000) Neuronal death in brain infarcts in man. Neuropathol Appl Neurobiol 26:55–66CrossRefPubMed
19.
go back to reference Nagasawa H, Kogure K (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037–1043PubMed Nagasawa H, Kogure K (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037–1043PubMed
20.
go back to reference Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1646 Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1646
21.
go back to reference Petito CK (1979) Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38:222–234PubMed Petito CK (1979) Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38:222–234PubMed
22.
go back to reference Towfighi J, Mauger D (1998) Temporal evolution of neuronal changes in cerebral hypoxia-ischemia in developing rats: a quantitative light microscopic study. Brain Res Dev Brain Res 109:169–177CrossRefPubMed Towfighi J, Mauger D (1998) Temporal evolution of neuronal changes in cerebral hypoxia-ischemia in developing rats: a quantitative light microscopic study. Brain Res Dev Brain Res 109:169–177CrossRefPubMed
23.
go back to reference Towfighi J, Zec N, Yager J, Housman C, Vannucci RC (1995) Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study. Acta Neuropathol 90:375–386CrossRefPubMed Towfighi J, Zec N, Yager J, Housman C, Vannucci RC (1995) Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study. Acta Neuropathol 90:375–386CrossRefPubMed
24.
go back to reference Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 100:149–160CrossRefPubMed Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 100:149–160CrossRefPubMed
25.
go back to reference Vannucci RC, Christensen MA, Yager JY (1993) Nature, time-course, and extent of cerebral edema in perinatal hypoxic-ischemic brain damage. Pediatr Neurol 9:29–34CrossRefPubMed Vannucci RC, Christensen MA, Yager JY (1993) Nature, time-course, and extent of cerebral edema in perinatal hypoxic-ischemic brain damage. Pediatr Neurol 9:29–34CrossRefPubMed
26.
27.
go back to reference Yamauchi H, Fukuda H, Oyanagi C (2002) Significance of white matter high intensity lesions as a predictor of stroke from arteriolosclerosis J Neurol Neurosurg Psychiatry 72:576–582CrossRef Yamauchi H, Fukuda H, Oyanagi C (2002) Significance of white matter high intensity lesions as a predictor of stroke from arteriolosclerosis J Neurol Neurosurg Psychiatry 72:576–582CrossRef
28.
go back to reference Zhang RL, Chopp M, Chen H, Garcia JH (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125:3–10CrossRefPubMed Zhang RL, Chopp M, Chen H, Garcia JH (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125:3–10CrossRefPubMed
Metadata
Title
Human cerebral infarct: a proposed histopathologic classification based on 137 cases
Authors
Hernando Mena
Diego Cadavid
Elisabeth J. Rushing
Publication date
01-12-2004
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 6/2004
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-004-0918-z

Other articles of this Issue 6/2004

Acta Neuropathologica 6/2004 Go to the issue

Acknowledgement to Referees

Acknowledgement to Referees 2004