Skip to main content
Top
Published in: Basic Research in Cardiology 1/2023

Open Access 01-12-2023 | Blood Pressure Measurement | Original Contribution

Ketone body 3-hydroxybutyrate elevates cardiac output through peripheral vasorelaxation and enhanced cardiac contractility

Authors: Casper Homilius, Jacob Marthinsen Seefeldt, Julie Sørensen Axelsen, Tina Myhre Pedersen, Trine Monberg Sørensen, Roni Nielsen, Henrik Wiggers, Jakob Hansen, Vladimir V. Matchkov, Hans Erik Bøtker, Ebbe Boedtkjer

Published in: Basic Research in Cardiology | Issue 1/2023

Login to get access

Abstract

The ketone body 3-hydroxybutyrate (3-OHB) increases cardiac output and myocardial perfusion without affecting blood pressure in humans, but the cardiovascular sites of action remain obscure. Here, we test the hypothesis in rats that 3-OHB acts directly on the heart to increase cardiac contractility and directly on blood vessels to lower systemic vascular resistance. We investigate effects of 3-OHB on (a) in vivo hemodynamics using echocardiography and invasive blood pressure measurements, (b) isolated perfused hearts in Langendorff systems, and (c) isolated arteries and veins in isometric myographs. We compare Na-3-OHB to equimolar NaCl added to physiological buffers or injection solutions. At plasma concentrations of 2–4 mM in vivo, 3-OHB increases cardiac output (by 28.3±7.8%), stroke volume (by 22.4±6.0%), left ventricular ejection fraction (by 13.3±4.6%), and arterial dP/dtmax (by 31.9±11.2%) and lowers systemic vascular resistance (by 30.6±11.2%) without substantially affecting heart rate or blood pressure. Applied to isolated perfused hearts at 3–10 mM, 3-OHB increases left ventricular developed pressure by up to 26.3±7.4 mmHg and coronary perfusion by up to 20.2±9.5%. Beginning at 1–3 mM, 3-OHB relaxes isolated coronary (EC50=12.4 mM), cerebral, femoral, mesenteric, and renal arteries as well as brachial, femoral, and mesenteric veins by up to 60% of pre-contraction within the pathophysiological concentration range. Of the two enantiomers that constitute racemic 3-OHB, D-3-OHB dominates endogenously; but tested separately, the enantiomers induce similar vasorelaxation. We conclude that increased cardiac contractility and generalized systemic vasorelaxation can explain the elevated cardiac output during 3-OHB administration. These actions strengthen the therapeutic rationale for 3-OHB in heart failure management.
Appendix
Available only for authorised users
Literature
14.
go back to reference Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femmino S, Garcia-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhauser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schluter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8CrossRefPubMedPubMedCentral Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femmino S, Garcia-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhauser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schluter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://​doi.​org/​10.​1007/​s00395-018-0696-8CrossRefPubMedPubMedCentral
20.
go back to reference Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR, Muscelli E (2016) Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65:1190–1195. https://doi.org/10.2337/db15-1356CrossRefPubMed Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR, Muscelli E (2016) Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65:1190–1195. https://​doi.​org/​10.​2337/​db15-1356CrossRefPubMed
22.
23.
25.
go back to reference Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299CrossRefPubMedPubMedCentral Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299CrossRefPubMedPubMedCentral
44.
go back to reference Nielsen R, Moller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, Harms HJ, Frokiaer J, Eiskjaer H, Jespersen NR, Mellemkjaer S, Lassen TR, Pryds K, Botker HE, Wiggers H (2019) Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 139:2129–2141CrossRefPubMedPubMedCentral Nielsen R, Moller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, Harms HJ, Frokiaer J, Eiskjaer H, Jespersen NR, Mellemkjaer S, Lassen TR, Pryds K, Botker HE, Wiggers H (2019) Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 139:2129–2141CrossRefPubMedPubMedCentral
49.
go back to reference Rahman M, Muhammad S, Khan MA, Chen H, Ridder DA, Muller-Fielitz H, Pokorna B, Vollbrandt T, Stolting I, Nadrowitz R, Okun JG, Offermanns S, Schwaninger M (2014) The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat Commun 5:3944. https://doi.org/10.1038/ncomms4944CrossRefPubMed Rahman M, Muhammad S, Khan MA, Chen H, Ridder DA, Muller-Fielitz H, Pokorna B, Vollbrandt T, Stolting I, Nadrowitz R, Okun JG, Offermanns S, Schwaninger M (2014) The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat Commun 5:3944. https://​doi.​org/​10.​1038/​ncomms4944CrossRefPubMed
55.
go back to reference Solaro RJ (2011) Integrated systems physiology From molecule to function to disease. Regulation of cardiac contractility. Morgan & Claypool Life Sciences, San Rafael (CA)CrossRef Solaro RJ (2011) Integrated systems physiology From molecule to function to disease. Regulation of cardiac contractility. Morgan & Claypool Life Sciences, San Rafael (CA)CrossRef
58.
go back to reference van Rijt WJ, Van Hove JLK, Vaz FM, Havinga R, Allersma DP, Zijp TR, Bedoyan JK, Heiner-Fokkema MR, Reijngoud DJ, Geraghty MT, Wanders RJA, Oosterveer MH, Derks TGJ (2021) Enantiomer-specific pharmacokinetics of D, L-3-hydroxybutyrate: Implications for the treatment of multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 44:926–938. https://doi.org/10.1002/jimd.12365CrossRefPubMedPubMedCentral van Rijt WJ, Van Hove JLK, Vaz FM, Havinga R, Allersma DP, Zijp TR, Bedoyan JK, Heiner-Fokkema MR, Reijngoud DJ, Geraghty MT, Wanders RJA, Oosterveer MH, Derks TGJ (2021) Enantiomer-specific pharmacokinetics of D, L-3-hydroxybutyrate: Implications for the treatment of multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 44:926–938. https://​doi.​org/​10.​1002/​jimd.​12365CrossRefPubMedPubMedCentral
62.
go back to reference Wilder R (1921) High fat diets in epilepsy. Mayo Clin Bull 2:308 Wilder R (1921) High fat diets in epilepsy. Mayo Clin Bull 2:308
Metadata
Title
Ketone body 3-hydroxybutyrate elevates cardiac output through peripheral vasorelaxation and enhanced cardiac contractility
Authors
Casper Homilius
Jacob Marthinsen Seefeldt
Julie Sørensen Axelsen
Tina Myhre Pedersen
Trine Monberg Sørensen
Roni Nielsen
Henrik Wiggers
Jakob Hansen
Vladimir V. Matchkov
Hans Erik Bøtker
Ebbe Boedtkjer
Publication date
01-12-2023
Publisher
Springer Berlin Heidelberg
Published in
Basic Research in Cardiology / Issue 1/2023
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-023-01008-y

Other articles of this Issue 1/2023

Basic Research in Cardiology 1/2023 Go to the issue

Mitochondria at the heart of cardioprotection

Perspective: mitochondrial STAT3 in cardioprotection