Skip to main content
Top
Published in: Child's Nervous System 1/2007

01-01-2007 | Original Paper

Bone mineral density in survivors of childhood brain tumours

Authors: M. Petraroli, E. D’Alessio, E. Ausili, A. Barini, P. Caradonna, R. Riccardi, M. Caldarelli, A. Rossodivita

Published in: Child's Nervous System | Issue 1/2007

Login to get access

Abstract

Background

Osteopenia has been reported in children surviving acute lymphoblastic leukaemia, apparently as consequence of therapy. Few studies have been published on bone mineral density (BMD) evaluation in children surviving from brain tumours. The endocrine system in these patients is frequently affected as consequence of therapeutic interventions such as cranial irradiation and anti-neoplastic agents: growth hormone deficiency is the most common adverse sequel. The pathogenesis of osteopenia in brain cancer survivors is multi-factorial but still uncertain.

Objective

The aim of this study is to examine bone mass in 12 brain cancer survivors and its relationship with their hormonal status.

Results and discussion

We observed that most of the patients had a BMD that was lower than normal in both the lumbar column and in the femoral neck. Bone mass loss was higher in the lumbar region rather than in the femoral neck, due to spinal radiation therapy and to the effect of hormonal deficiencies. Particularly hypogonadism, but also multiple hormonal deficiencies, are associated with lower BMD values. Experience in clinical care of these patients suggests the importance of periodic evaluations of BMD, especially in those with secondary hormone deficiencies. Moreover, the periodic assessment of the hypothalamus–pituitary function is essential for an early diagnosis of hormonal insufficiency, primarily hypogonadism, to precociously detect bone mineral loss and to prevent pathological fractures, thus improving the quality of life.
Literature
2.
go back to reference Atkinson SA, Frasher L, Gundberg CM et al (1989) Mineral homeostasis and bone mass in children treated for acute lymphoblastic leukaemia. J Pediatr 114:793–800PubMedCrossRef Atkinson SA, Frasher L, Gundberg CM et al (1989) Mineral homeostasis and bone mass in children treated for acute lymphoblastic leukaemia. J Pediatr 114:793–800PubMedCrossRef
3.
go back to reference Warner JT, Evans WD, Dunstan FDJ et al (1996) Relative osteopenia following treatment for childhood acute lymphoblastic leukemia. Med Pediatr Oncol 27:241, (Abstract O-119) Warner JT, Evans WD, Dunstan FDJ et al (1996) Relative osteopenia following treatment for childhood acute lymphoblastic leukemia. Med Pediatr Oncol 27:241, (Abstract O-119)
4.
go back to reference Hoorweg-Nijman JJG, van Dijk HJ, Pieters R et al (1996) Bone mineralization after treatment for acute lymphoblastic leukemia. Med Pediatr Oncol 27:292, (Abstract P20) Hoorweg-Nijman JJG, van Dijk HJ, Pieters R et al (1996) Bone mineralization after treatment for acute lymphoblastic leukemia. Med Pediatr Oncol 27:292, (Abstract P20)
5.
go back to reference Halton JM, Atkinson SA, Fraher L et al (1996) Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukaemia. J Bone Miner Res 11:1774–1783PubMed Halton JM, Atkinson SA, Fraher L et al (1996) Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukaemia. J Bone Miner Res 11:1774–1783PubMed
6.
go back to reference Gilsanz V, Carlson ME, Roe TF et al (1990) Osteoporosis after cranial irradiation for acute lymphoblastic leukemia. J Pediatr 117:238–244PubMedCrossRef Gilsanz V, Carlson ME, Roe TF et al (1990) Osteoporosis after cranial irradiation for acute lymphoblastic leukemia. J Pediatr 117:238–244PubMedCrossRef
7.
go back to reference Brennan BMD, Rahim A, Mackie EM et al (1996) Osteopenia and growth hormone deficiency in adults treated for acute lymphoblastic leukemia in childhood. Med Pediatr Oncol 27:347, (Abstract P240) Brennan BMD, Rahim A, Mackie EM et al (1996) Osteopenia and growth hormone deficiency in adults treated for acute lymphoblastic leukemia in childhood. Med Pediatr Oncol 27:347, (Abstract P240)
8.
go back to reference Chihara K, Sugimoto T (1997) The action of GH/IGF-1/IGFBP in osteoblasts and osteoclasts. Horm Res 48(Suppl):45–49PubMedCrossRef Chihara K, Sugimoto T (1997) The action of GH/IGF-1/IGFBP in osteoblasts and osteoclasts. Horm Res 48(Suppl):45–49PubMedCrossRef
9.
go back to reference Barr RD, Halton J, Cockshott WP et al (1993) Impact of age and cranial irradiation on radiographic skeletal pathology in children with acute lymphoblastic leukaemia. Med Pediatr Oncol 21:537 (Abstract 26) Barr RD, Halton J, Cockshott WP et al (1993) Impact of age and cranial irradiation on radiographic skeletal pathology in children with acute lymphoblastic leukaemia. Med Pediatr Oncol 21:537 (Abstract 26)
10.
go back to reference Barr RD, Simpson T, Webber CE, Gill JC, Hay J, Eves M, Whitton AC (1998) Osteopenia in children surviving brain tumours. Eur J Cancer 34(6):873–877PubMedCrossRef Barr RD, Simpson T, Webber CE, Gill JC, Hay J, Eves M, Whitton AC (1998) Osteopenia in children surviving brain tumours. Eur J Cancer 34(6):873–877PubMedCrossRef
11.
go back to reference Brennan BMD, Rahim A, Adams JA, Eden OB, Shalet SM (1999) Reduced bone mineral density in young adults following cure of acute lymphoblastic leukaemia in childhood. Br J Cancer 79:1859–1863PubMedCrossRef Brennan BMD, Rahim A, Adams JA, Eden OB, Shalet SM (1999) Reduced bone mineral density in young adults following cure of acute lymphoblastic leukaemia in childhood. Br J Cancer 79:1859–1863PubMedCrossRef
12.
go back to reference De Boer H, Block GJ, Van Lingen A, Teule GJJ, Lips P, Van der Veen EA (1994) The consequences of childhood onset of growth hormone deficiency for adult bone mass. J Bone Miner Res 9:1319–1326PubMedCrossRef De Boer H, Block GJ, Van Lingen A, Teule GJJ, Lips P, Van der Veen EA (1994) The consequences of childhood onset of growth hormone deficiency for adult bone mass. J Bone Miner Res 9:1319–1326PubMedCrossRef
13.
go back to reference Kaufmann JM, Tachman P, Vermeulen A, Vandeweghe M (1992) Bone mineral status in growth hormone deficient males with isolate and multiple pituitary deficiencies of childhood onset. J Clin Endocrinol Metab 74:118–123CrossRef Kaufmann JM, Tachman P, Vermeulen A, Vandeweghe M (1992) Bone mineral status in growth hormone deficient males with isolate and multiple pituitary deficiencies of childhood onset. J Clin Endocrinol Metab 74:118–123CrossRef
14.
go back to reference Holmes SJ, Economou G, Whitehouse RW, Adams JE, Chalet SS (1994) Reduced bone mineral density in patients with adult onset growth hormone deficiency. J Clin Endocrinol Metab 78:669–674PubMedCrossRef Holmes SJ, Economou G, Whitehouse RW, Adams JE, Chalet SS (1994) Reduced bone mineral density in patients with adult onset growth hormone deficiency. J Clin Endocrinol Metab 78:669–674PubMedCrossRef
15.
go back to reference Colao A, Di Somma C, Pivonello R, Loche S, Aimaretti G, Cerbone G, Faggiano A, Corneli G, Ghigo E, Lombardi G (1999) Bone loss is correlated to the severity of growth hormone deficiency in adult patients with hypopituitarism. J Clin Endocrinol Metab 84(6):1919–1924PubMedCrossRef Colao A, Di Somma C, Pivonello R, Loche S, Aimaretti G, Cerbone G, Faggiano A, Corneli G, Ghigo E, Lombardi G (1999) Bone loss is correlated to the severity of growth hormone deficiency in adult patients with hypopituitarism. J Clin Endocrinol Metab 84(6):1919–1924PubMedCrossRef
16.
go back to reference Mulder JE, Bilezikian JP (2004) Bone density in survivors of childhood cancer. J Clin Densitom 7(4):432–442PubMedCrossRef Mulder JE, Bilezikian JP (2004) Bone density in survivors of childhood cancer. J Clin Densitom 7(4):432–442PubMedCrossRef
17.
go back to reference Arikoski P, Komulainen J, Riikonen P et al (1999) Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a 1-year prospective study. J Clin Endocrinol Metab 84:3174–3181PubMedCrossRef Arikoski P, Komulainen J, Riikonen P et al (1999) Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a 1-year prospective study. J Clin Endocrinol Metab 84:3174–3181PubMedCrossRef
18.
go back to reference Crofton PM, Ahmed SF, Wade JC et al (1998) Effects of intensive chemotherapy on bone and collagen turnover and the growth hormone axis in children with acute lymphoblastic leukaemia. J Clin Endocrinol Metab 83:3121–3129PubMedCrossRef Crofton PM, Ahmed SF, Wade JC et al (1998) Effects of intensive chemotherapy on bone and collagen turnover and the growth hormone axis in children with acute lymphoblastic leukaemia. J Clin Endocrinol Metab 83:3121–3129PubMedCrossRef
19.
go back to reference Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179PubMedCrossRef Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179PubMedCrossRef
20.
go back to reference Arikoski P, Voutilainen R, Kroger H (2003) Bone mineral density in long-term survivors of childhood cancer. J Pediatr Endocrinol Metab 16(Suppl 2):343–353PubMed Arikoski P, Voutilainen R, Kroger H (2003) Bone mineral density in long-term survivors of childhood cancer. J Pediatr Endocrinol Metab 16(Suppl 2):343–353PubMed
21.
go back to reference Liora L, Sivan D, Moshe P (2003) Growth without growth hormone: growth pattern and final height of five patients with idiopathic combined pituitary hormone deficiency. Clin Endocrinol 59:82–88CrossRef Liora L, Sivan D, Moshe P (2003) Growth without growth hormone: growth pattern and final height of five patients with idiopathic combined pituitary hormone deficiency. Clin Endocrinol 59:82–88CrossRef
22.
go back to reference Geffner ME (1996) The growth without growth hormone syndrome. Endocrinol Metab Clin N Am 25:649–663CrossRef Geffner ME (1996) The growth without growth hormone syndrome. Endocrinol Metab Clin N Am 25:649–663CrossRef
23.
go back to reference Murashita M, Tajima T, Nakae J, Shinohara N, Geffner ME, Fujieda K (1999) Near-normal linear growth in the setting of markedly reduced growth hormone and IGF1: a case report. Horm Res 51:184–188PubMedCrossRef Murashita M, Tajima T, Nakae J, Shinohara N, Geffner ME, Fujieda K (1999) Near-normal linear growth in the setting of markedly reduced growth hormone and IGF1: a case report. Horm Res 51:184–188PubMedCrossRef
24.
go back to reference Ashcraft MW, Hartzband PI, van Herle AJ, Bersch N, Golde DW (1983) A unique growth factor in patient with acromegaloidism. J Clin Endocrinol Metab 57:272–276PubMedCrossRef Ashcraft MW, Hartzband PI, van Herle AJ, Bersch N, Golde DW (1983) A unique growth factor in patient with acromegaloidism. J Clin Endocrinol Metab 57:272–276PubMedCrossRef
25.
go back to reference Fors H, Bjarnason R, Wiren L et al (2001) Currently used growth-promoting treatment of children results in normal bone mass and density. A prospective trial of discontinuing GH treatment in adolescents. Clin Endocrinol (Oxf) 55:617–624CrossRef Fors H, Bjarnason R, Wiren L et al (2001) Currently used growth-promoting treatment of children results in normal bone mass and density. A prospective trial of discontinuing GH treatment in adolescents. Clin Endocrinol (Oxf) 55:617–624CrossRef
26.
go back to reference Murray RD, Darzy KH, Gleeson HK, Shalet SM (2002) GH-deficient survivors of childhood cancer: GH replacement during adult life. J Clin Endocrinol Metab 87(1):129–135PubMedCrossRef Murray RD, Darzy KH, Gleeson HK, Shalet SM (2002) GH-deficient survivors of childhood cancer: GH replacement during adult life. J Clin Endocrinol Metab 87(1):129–135PubMedCrossRef
27.
go back to reference Behre HM, Kliesh S, Leifke E, Link TM, Nieschlag E (1997) Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 82:2386–2390PubMedCrossRef Behre HM, Kliesh S, Leifke E, Link TM, Nieschlag E (1997) Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 82:2386–2390PubMedCrossRef
28.
go back to reference Rosen T, Wilhelmsen L, Landin- Wilhelmsen K, Lappas G, Bengtsson BA (1997) Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur J Endocrinol 137:240–245PubMedCrossRef Rosen T, Wilhelmsen L, Landin- Wilhelmsen K, Lappas G, Bengtsson BA (1997) Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur J Endocrinol 137:240–245PubMedCrossRef
29.
go back to reference Balducci R, Toscano V, Pasquino AM et al (1995) Bone turnover and bone mineral density in young adult patients with panhypopituitarism before and after long-term growth hormone therapy. Eur J Endocrinol 132:42–46PubMed Balducci R, Toscano V, Pasquino AM et al (1995) Bone turnover and bone mineral density in young adult patients with panhypopituitarism before and after long-term growth hormone therapy. Eur J Endocrinol 132:42–46PubMed
30.
go back to reference Hokken-Koelega ACS, van Doorn JWG, Hahlen K et al (1993) Long term effects of treatment for acute lymphoblastic leukemia with and without cranial irradiation on growth and puberty: a comparative study. Pediatr Res 33:577–582PubMed Hokken-Koelega ACS, van Doorn JWG, Hahlen K et al (1993) Long term effects of treatment for acute lymphoblastic leukemia with and without cranial irradiation on growth and puberty: a comparative study. Pediatr Res 33:577–582PubMed
31.
go back to reference Wüster C (1993) Growth hormone and bone metabolism. Acta Endocrinol (Copenh) 128(Suppl 2):14–18 Wüster C (1993) Growth hormone and bone metabolism. Acta Endocrinol (Copenh) 128(Suppl 2):14–18
32.
go back to reference Inzucchi SE, Robbins RJ (1994) Effects of growth hormone on human biology. J Clin Endocrinol Metab 79:691–694PubMedCrossRef Inzucchi SE, Robbins RJ (1994) Effects of growth hormone on human biology. J Clin Endocrinol Metab 79:691–694PubMedCrossRef
33.
go back to reference Mukherjee A, Shalet S (2003) Growth hormone replacement therapy (GHRT) in children and adolescents: skeletal impact. Med Pediatr Oncol 41:235–242PubMedCrossRef Mukherjee A, Shalet S (2003) Growth hormone replacement therapy (GHRT) in children and adolescents: skeletal impact. Med Pediatr Oncol 41:235–242PubMedCrossRef
Metadata
Title
Bone mineral density in survivors of childhood brain tumours
Authors
M. Petraroli
E. D’Alessio
E. Ausili
A. Barini
P. Caradonna
R. Riccardi
M. Caldarelli
A. Rossodivita
Publication date
01-01-2007
Publisher
Springer-Verlag
Published in
Child's Nervous System / Issue 1/2007
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-006-0175-7

Other articles of this Issue 1/2007

Child's Nervous System 1/2007 Go to the issue