Skip to main content
Top
Published in: Heart and Vessels 5/2020

01-05-2020 | Aortic Valve Replacement | Original Article

Perioperative urinary excretion of aquaporin-2 dependent upon vasopressin in cardiac surgery

Authors: Masahiro Fujii, Ryosuke Amitani, Ryuzo Bessho

Published in: Heart and Vessels | Issue 5/2020

Login to get access

Abstract

Aquaporin-2 is found in the apical cell membranes of the principal cells of the collecting duct of the kidney. Plasma arginine vasopressin has been reported to be markedly elevated during cardiac surgery. However fluctuations in urine aquaporin-2 levels have never been reported. We aimed to determine the responses of urine aquaporin-2 and evaluated the relationship between urine aquaporin-2 and plasma arginine vasopressin levels during perioperative periods in cardiac surgical patients. Eight patients undergoing elective isolated aortic valve replacement in normothermia were enrolled prospectively. Blood and urine samples were collected preoperatively and on postoperative days 1, 4, and 7. Patients received furosemide and spironolactone, as needed, during the clinical course; tolvaptan was not needed. Median plasma arginine vasopressin levels [with interquartile range] significantly increased to 1.5 [1.3–2.0], 15.3 [11.4–22.2]*, 2.2 [2.1–2.3], 1.7 [1.5–1.9] pg/mL preoperatively, on postoperative days 1, 4, and 7, respectively (*: p = 0.0001). Similarly, levels of urine aquaporin-2 markedly increased in 3.4 [1.9–5.6], 25.8 [18.4–33.5]**, 9.3 [5.9–14.0], 5.4 [5.3–6.1] (ng/mL), respectively (**p = 0.0004). A significant correlation between plasma arginine vasopressin and urine aquaporin-2 was observed during the entire investigation (R2 = 0.616, p < 0.0001). Plasma arginine vasopressin and urine aquaporin-2 levels were significantly elevated on postoperative day 1 in patients who underwent aortic valve replacement with cardiopulmonary bypass. A significant correlation between plasma arginine vasopressin and urine aquaporin-2 was observed. Urine aquaporin-2 should be further investigated as a potential biomarker for postoperative cardiac dysfunction.
Literature
1.
go back to reference Butler J, Rocker GM, Westaby S (1993) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 55:552–559CrossRef Butler J, Rocker GM, Westaby S (1993) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 55:552–559CrossRef
2.
go back to reference Edmunds LH Jr (1998) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 66:S12–S16CrossRef Edmunds LH Jr (1998) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 66:S12–S16CrossRef
3.
go back to reference Lehot JJ, Villard J, Piriz H, Philbin DM, Carry PY, Gauquelin G, Claustrat B, Sassolas G, Galliot J, Estanove S (1992) Hemodynamic and hormonal responses to hypothermic and normothermic cardiopulmonary bypass. J Cardiothorac Vasc Anesth 6:132–139CrossRef Lehot JJ, Villard J, Piriz H, Philbin DM, Carry PY, Gauquelin G, Claustrat B, Sassolas G, Galliot J, Estanove S (1992) Hemodynamic and hormonal responses to hypothermic and normothermic cardiopulmonary bypass. J Cardiothorac Vasc Anesth 6:132–139CrossRef
4.
go back to reference Marumoto K, Hamada M, Hiwada K (1995) Increased secretion of atrial and brain natriuretic peptides during acute myocardial ischaemia induced by dynamic exercise in patients with angina pectoris. Clin Sci (Lond) 88:551–556CrossRef Marumoto K, Hamada M, Hiwada K (1995) Increased secretion of atrial and brain natriuretic peptides during acute myocardial ischaemia induced by dynamic exercise in patients with angina pectoris. Clin Sci (Lond) 88:551–556CrossRef
5.
go back to reference Morimoto K, Mori T, Ishiguro S, Matsuda N, Hara Y, Kuroda H (1998) Perioperative changes in plasma brain natriuretic peptide concentrations in patients undergoing cardiac surgery. Surg Today 28:23–29CrossRef Morimoto K, Mori T, Ishiguro S, Matsuda N, Hara Y, Kuroda H (1998) Perioperative changes in plasma brain natriuretic peptide concentrations in patients undergoing cardiac surgery. Surg Today 28:23–29CrossRef
6.
go back to reference Radin MJ, Yu MJ, Stoedkilde L, Miller RL, Hoffert JD, Frokiaer J, Pisitkun T, Knepper MA (2012) Aquaporin-2 regulation in health and disease. Vet Clin Pathol 41:455–470CrossRef Radin MJ, Yu MJ, Stoedkilde L, Miller RL, Hoffert JD, Frokiaer J, Pisitkun T, Knepper MA (2012) Aquaporin-2 regulation in health and disease. Vet Clin Pathol 41:455–470CrossRef
7.
go back to reference Rai T, Sekine K, Kanno K, Hata K, Miura M, Mizushima A, Marumo F, Sasaki S (1997) Urinary excretion of aquaporin-2 water channel protein in human and rat. J Am Soc Nephrol 8:1357–1362PubMed Rai T, Sekine K, Kanno K, Hata K, Miura M, Mizushima A, Marumo F, Sasaki S (1997) Urinary excretion of aquaporin-2 water channel protein in human and rat. J Am Soc Nephrol 8:1357–1362PubMed
8.
go back to reference Novella S, Martínez AC, Pagán RM, Hernández M, García-Sacristán A, González-Pinto A, González-Santos JM, Benedito S (2007) Plasma levels and vascular effects of vasopressin in patients undergoing coronary artery bypass grafting. Eur J Cardiothorac Surg 32:69–76CrossRef Novella S, Martínez AC, Pagán RM, Hernández M, García-Sacristán A, González-Pinto A, González-Santos JM, Benedito S (2007) Plasma levels and vascular effects of vasopressin in patients undergoing coronary artery bypass grafting. Eur J Cardiothorac Surg 32:69–76CrossRef
9.
go back to reference Morrison WE, Simone S, Conway D, Tumulty J, Johnson C, Cardarelli M (2008) Levels of vasopressin in children undergoing cardiopulmonary bypass. Cardiol Young 18:135–140CrossRef Morrison WE, Simone S, Conway D, Tumulty J, Johnson C, Cardarelli M (2008) Levels of vasopressin in children undergoing cardiopulmonary bypass. Cardiol Young 18:135–140CrossRef
10.
go back to reference Otsuka F, Morita K, Takeuchi M, Yamauchi T, Ogura T, Sekines K, Miura M, Hirakawa M, Makino H (1999) The effects of intrinsic vasopressin on urinary aquaporin-2 excretion and urine osmolality during surgery under general anesthesia. Anesth Analg 88:181–187PubMed Otsuka F, Morita K, Takeuchi M, Yamauchi T, Ogura T, Sekines K, Miura M, Hirakawa M, Makino H (1999) The effects of intrinsic vasopressin on urinary aquaporin-2 excretion and urine osmolality during surgery under general anesthesia. Anesth Analg 88:181–187PubMed
11.
go back to reference Sasaki S, Ohmoto Y, Mori T, Iwata F, Muraguchi M (2012) Daily variance of urinary excretion of AQP2 determined by sandwich ELISA method. Clin Exp Nephrol 16:406–410CrossRef Sasaki S, Ohmoto Y, Mori T, Iwata F, Muraguchi M (2012) Daily variance of urinary excretion of AQP2 determined by sandwich ELISA method. Clin Exp Nephrol 16:406–410CrossRef
12.
go back to reference Saito T, Ishikawa SE, Sasaki S, Nakamura T, Rokkaku K, Kawakami A, Honda K, Marumo F, Saito T (1997) Urinary excretion of aquaporin-2 in the diagnosis of central diabetes insipidus. J Clin Endocrinol Metab 82:1823–1827PubMed Saito T, Ishikawa SE, Sasaki S, Nakamura T, Rokkaku K, Kawakami A, Honda K, Marumo F, Saito T (1997) Urinary excretion of aquaporin-2 in the diagnosis of central diabetes insipidus. J Clin Endocrinol Metab 82:1823–1827PubMed
13.
go back to reference Funayama H, Nakamura T, Saito T, Yoshimura A, Saito M, Kawakami M, Ishikawa SE (2004) Urinary excretion of aquaporin-2 water channel exaggerated dependent upon vasopressin in congestive heart failure. Kidney Int 66:1387–1392CrossRef Funayama H, Nakamura T, Saito T, Yoshimura A, Saito M, Kawakami M, Ishikawa SE (2004) Urinary excretion of aquaporin-2 water channel exaggerated dependent upon vasopressin in congestive heart failure. Kidney Int 66:1387–1392CrossRef
14.
go back to reference Imamura T, Kinugawa K, Fujino T, Inaba T, Maki H, Hatano M, Yao A, Komuro I (2014) Increased urine aquaporin-2 relative to plasma arginine vasopressin is a novel marker of response to tolvaptan in patients with decompensated heart failure. Circ J 78:2240–2249CrossRef Imamura T, Kinugawa K, Fujino T, Inaba T, Maki H, Hatano M, Yao A, Komuro I (2014) Increased urine aquaporin-2 relative to plasma arginine vasopressin is a novel marker of response to tolvaptan in patients with decompensated heart failure. Circ J 78:2240–2249CrossRef
15.
go back to reference Matsuyama K, Koizumi N, Nishibe T, Iwasaki T, Iwahasi T, Toguchi K, Takahashi S, Iwahori A, Maruno K, Ogino H (2016) Effects of short-term administration of tolvaptan after open heart surgery. Int J Cardiol 220:192–195CrossRef Matsuyama K, Koizumi N, Nishibe T, Iwasaki T, Iwahasi T, Toguchi K, Takahashi S, Iwahori A, Maruno K, Ogino H (2016) Effects of short-term administration of tolvaptan after open heart surgery. Int J Cardiol 220:192–195CrossRef
16.
go back to reference Levine FH, Philbin DM, Kono K, Coggins CH, Emerson CW, Austen WG, Buckley MJ (1981) Plasma vasopressin levels and urinary sodium excretion during cardiopulmonary bypass with and without pulsatile flow. Ann Thorac Surg 32:63–67CrossRef Levine FH, Philbin DM, Kono K, Coggins CH, Emerson CW, Austen WG, Buckley MJ (1981) Plasma vasopressin levels and urinary sodium excretion during cardiopulmonary bypass with and without pulsatile flow. Ann Thorac Surg 32:63–67CrossRef
17.
go back to reference Philbin DM, Levine FH, Emerson CW, Coggins CH, Buckley MJ, Austen WG (1979) Plasma vasopressin levels and urinary flow during cardiopulmonary bypass in patients with valvular heart disease: effect of pulsatile flow. J Thorac Cadiovasc Surg 78:779–783CrossRef Philbin DM, Levine FH, Emerson CW, Coggins CH, Buckley MJ, Austen WG (1979) Plasma vasopressin levels and urinary flow during cardiopulmonary bypass in patients with valvular heart disease: effect of pulsatile flow. J Thorac Cadiovasc Surg 78:779–783CrossRef
18.
go back to reference Xu DL, Martin PY, Ohara M, St John J, Pattison T, Meng X, Morris K, Kim JK, Schrier RW (1997) Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J Clin Invest 99:1500–1505CrossRef Xu DL, Martin PY, Ohara M, St John J, Pattison T, Meng X, Morris K, Kim JK, Schrier RW (1997) Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J Clin Invest 99:1500–1505CrossRef
19.
go back to reference Nielsen S, Terris J, Andersen D, Ecelbarger C, Frokiaer J, Jonassen T, Marples D, Knepper MA, Petersen JS (1997) Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proc Natl Acad Sci USA 94:5450–5455CrossRef Nielsen S, Terris J, Andersen D, Ecelbarger C, Frokiaer J, Jonassen T, Marples D, Knepper MA, Petersen JS (1997) Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proc Natl Acad Sci USA 94:5450–5455CrossRef
20.
go back to reference Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C, Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST) Investigators (2007) Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA 297:1319–1331CrossRef Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C, Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST) Investigators (2007) Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA 297:1319–1331CrossRef
21.
go back to reference Udelson JE, Orlandi C, Ouyang J, Krasa H, Zimmer CA, Frivold G, Haught WH, Meymandi S, Macarie C, Raef D, Wedge P, Konstam MA, Gheorghiade M (2008) Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international, multicenter, randomized, placebo-controlled trial. J Am Coll Cardiol 52:1540–1545CrossRef Udelson JE, Orlandi C, Ouyang J, Krasa H, Zimmer CA, Frivold G, Haught WH, Meymandi S, Macarie C, Raef D, Wedge P, Konstam MA, Gheorghiade M (2008) Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international, multicenter, randomized, placebo-controlled trial. J Am Coll Cardiol 52:1540–1545CrossRef
22.
go back to reference Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, Orlandi C, SALT Investigators (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355:2099–2112CrossRef Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, Orlandi C, SALT Investigators (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355:2099–2112CrossRef
23.
go back to reference Matsuzaki M, Hori M, Izumi T, Fukunami M (2011) Efficacy and safety of tolvaptan in heart failure patients with volume overload despite the standard treatment with conventional diuretics: a phase III, randomized, double-blind, placebo-controlled study QUEST study. Cardiovasc Drugs Ther 25(Suppl 1):S33–S45CrossRef Matsuzaki M, Hori M, Izumi T, Fukunami M (2011) Efficacy and safety of tolvaptan in heart failure patients with volume overload despite the standard treatment with conventional diuretics: a phase III, randomized, double-blind, placebo-controlled study QUEST study. Cardiovasc Drugs Ther 25(Suppl 1):S33–S45CrossRef
24.
go back to reference Mitsui M, Kataoka A, Nara Y, Nagura F, Kawashima H, Hioki H, Nakashima M, Watanabe Y, Yokoyama N, Kozuma K (2019) Clinical safety and efficacy of tolvaptan for acute phase therapy in patients with low-flow and normal-flow severe aortic stenosis. Heart Vessels 34:1684–1691CrossRef Mitsui M, Kataoka A, Nara Y, Nagura F, Kawashima H, Hioki H, Nakashima M, Watanabe Y, Yokoyama N, Kozuma K (2019) Clinical safety and efficacy of tolvaptan for acute phase therapy in patients with low-flow and normal-flow severe aortic stenosis. Heart Vessels 34:1684–1691CrossRef
25.
go back to reference Takagi K, Sato N, Ishihara S, Sone M, Tokuyama H, Nakama K, Omote T, Kikuchi A, Ishikawa M, Amitani K, Takahashi N, Maruyama Y, Imura H, Shimizu W (2018) Effects of tolvaptan on urine output in hospitalized heart failure patients with hypoalbuminemia or proteinuria. Heart Vessels 33:413–420CrossRef Takagi K, Sato N, Ishihara S, Sone M, Tokuyama H, Nakama K, Omote T, Kikuchi A, Ishikawa M, Amitani K, Takahashi N, Maruyama Y, Imura H, Shimizu W (2018) Effects of tolvaptan on urine output in hospitalized heart failure patients with hypoalbuminemia or proteinuria. Heart Vessels 33:413–420CrossRef
26.
go back to reference Nishi H, Toda K, Miyagawa S, Yoshikawa Y, Fukushima S, Kawamura M, Yoshioka D, Saito T, Ueno T, Kuratani T, Sawa Y (2015) Effects of tolvaptan in the early postoperative stage after heart valve surgery: results of the STAR (Study of Tolvaptan for fluid retention AfteR valve surgery) trial. Surg Today 45:1542–1551CrossRef Nishi H, Toda K, Miyagawa S, Yoshikawa Y, Fukushima S, Kawamura M, Yoshioka D, Saito T, Ueno T, Kuratani T, Sawa Y (2015) Effects of tolvaptan in the early postoperative stage after heart valve surgery: results of the STAR (Study of Tolvaptan for fluid retention AfteR valve surgery) trial. Surg Today 45:1542–1551CrossRef
27.
go back to reference Kato TS, Ono S, Kajimoto K, Kuwaki K, Yamamoto T, Amano A (2015) Early introduction of tolvaptan after cardiac surgery: a renal sparing strategy in the light of the renal resistive index measured by ultrasound. J Cardiothorac Surg 10:143CrossRef Kato TS, Ono S, Kajimoto K, Kuwaki K, Yamamoto T, Amano A (2015) Early introduction of tolvaptan after cardiac surgery: a renal sparing strategy in the light of the renal resistive index measured by ultrasound. J Cardiothorac Surg 10:143CrossRef
28.
go back to reference Bellos I, Iliopoulos DC, Perrea DN (2019) The role of tolvaptan administration after cardiac surgery: a meta-analysis. J Cardiothorac Vasc Anesth 33:2170–2179CrossRef Bellos I, Iliopoulos DC, Perrea DN (2019) The role of tolvaptan administration after cardiac surgery: a meta-analysis. J Cardiothorac Vasc Anesth 33:2170–2179CrossRef
Metadata
Title
Perioperative urinary excretion of aquaporin-2 dependent upon vasopressin in cardiac surgery
Authors
Masahiro Fujii
Ryosuke Amitani
Ryuzo Bessho
Publication date
01-05-2020
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 5/2020
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-019-01533-8

Other articles of this Issue 5/2020

Heart and Vessels 5/2020 Go to the issue