Skip to main content
Top
Published in: World Journal of Urology 9/2017

01-09-2017 | Topic Paper

Shockwave lithotripsy: techniques for improving outcomes

Authors: Tadeusz Kroczak, Kymora B. Scotland, Ben Chew, Kenneth T. Pace

Published in: World Journal of Urology | Issue 9/2017

Login to get access

Abstract

Objectives

Shock wave lithotripsy (SWL) remains the only effective truly non-invasive treatment for nephrolithiasis. While single-treatment success rates may not equal those of ureteroscopy and percutaneous nephrolithotomy, it has an important role to play in the management of stones. In this paper, we outline the latest evidence-based recommendations for maximizing SWL outcomes, while minimizing complications.

Materials and methods

A comprehensive review of the current literature was performed regarding maximizing SWL outcomes.

Results

Several different considerations need to be made regarding patient selection with respect to body habitus, body mass index, anatomical location and underlying urologic abnormalities. Stone composition and stone density (Hounsfield Units) are important prognostic variables. Patient positioning is critical to allow for adequate stone localization with either fluoroscopy or ultrasound. Coupling should be optimized with a low viscosity gel applied to the therapy head first and patient movement should be limited. SWL energy should be increased slowly and shockwave rates of 60 or 90 Hz should be used. Medical expulsive therapy with alpha-blockers after SWL treatment has shown benefit, particularly with stones greater than 10 mm.

Conclusion

While single-treatment success rates may not equal those of ureteroscopy or percutaneous nephrolithotomy, with proper patient selection, optimization of SWL technique, and use of adjunctive treatment after SWL, success rates can be maximized while further reducing the already low rate of serious complications. SWL remains an excellent treatment option for calculi even in 2017.
Literature
1.
go back to reference Chaussy CG, Fuchs GJ (1989) Current state and future developments of noninvasive treatment of human urinary stones with extracorporeal shock wave lithotripsy. J Urol 141:782CrossRefPubMed Chaussy CG, Fuchs GJ (1989) Current state and future developments of noninvasive treatment of human urinary stones with extracorporeal shock wave lithotripsy. J Urol 141:782CrossRefPubMed
2.
go back to reference Kerbl K, Rehman J, Landman J et al (2002) Current management of urolithiasis: progress or regress? J Endourol 16:281CrossRefPubMed Kerbl K, Rehman J, Landman J et al (2002) Current management of urolithiasis: progress or regress? J Endourol 16:281CrossRefPubMed
3.
go back to reference Lantz AG, McKay J, Ordon M, Pace KT, Monga M, Honey RJ (2016) Shockwave lithotripsy practice pattern variations among and between american and canadian urologists: in support of guidelines. J Endourol 30(8):918–922CrossRefPubMed Lantz AG, McKay J, Ordon M, Pace KT, Monga M, Honey RJ (2016) Shockwave lithotripsy practice pattern variations among and between american and canadian urologists: in support of guidelines. J Endourol 30(8):918–922CrossRefPubMed
4.
go back to reference Lee C, Best SL, Ugarte R et al (2008) Impact of learning curve on efficacy of shock wave lithotripsy. Radiol Technol 80(1):20–24PubMed Lee C, Best SL, Ugarte R et al (2008) Impact of learning curve on efficacy of shock wave lithotripsy. Radiol Technol 80(1):20–24PubMed
6.
go back to reference Knoll T, Fritsche HM, Rassweiler JJ (2011) Medical and economic aspects of extracorporeal shock wave lithotripsy. Aktuelle Urol 42:363–367CrossRefPubMed Knoll T, Fritsche HM, Rassweiler JJ (2011) Medical and economic aspects of extracorporeal shock wave lithotripsy. Aktuelle Urol 42:363–367CrossRefPubMed
7.
go back to reference Kohrmann KU, Rassweiler JJ, Manning M et al (1995) The clinical introduction of a third generation lithotriptor: modulith SL20. J Urol 153:1379CrossRefPubMed Kohrmann KU, Rassweiler JJ, Manning M et al (1995) The clinical introduction of a third generation lithotriptor: modulith SL20. J Urol 153:1379CrossRefPubMed
8.
go back to reference Tan YM, Yip SK, Chong TW et al (2002) Clinical experience and results of ESWL treatment for 3,093 urinary calculi with the StorzModultih SL20 lithotriptor at the Singapore General Hospital. Scand J Urol Nephrol 36:363CrossRefPubMed Tan YM, Yip SK, Chong TW et al (2002) Clinical experience and results of ESWL treatment for 3,093 urinary calculi with the StorzModultih SL20 lithotriptor at the Singapore General Hospital. Scand J Urol Nephrol 36:363CrossRefPubMed
9.
go back to reference Lam HS, Lingeman JE, Barron M et al (1992) Staghorn calculi: analysis of treatment results between initial percutaneous nephrostolithotomy and extracorporeal shock wave lithotripsy monotherapy with reference to surface area. J Urol 147(5):1219–1225CrossRefPubMed Lam HS, Lingeman JE, Barron M et al (1992) Staghorn calculi: analysis of treatment results between initial percutaneous nephrostolithotomy and extracorporeal shock wave lithotripsy monotherapy with reference to surface area. J Urol 147(5):1219–1225CrossRefPubMed
10.
go back to reference Wiesenthal JD, Ghiculete D, Ray AA et al (2011) A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. J Urol 186:556–562CrossRefPubMed Wiesenthal JD, Ghiculete D, Ray AA et al (2011) A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. J Urol 186:556–562CrossRefPubMed
11.
go back to reference Patel T, Kozakowski K, Hruby G et al (2009) Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol 23:1383CrossRefPubMed Patel T, Kozakowski K, Hruby G et al (2009) Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol 23:1383CrossRefPubMed
12.
go back to reference Gupta NP, Ansari MS, Kesarvani P et al (2005) Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int 95:1285–1288CrossRefPubMed Gupta NP, Ansari MS, Kesarvani P et al (2005) Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int 95:1285–1288CrossRefPubMed
13.
go back to reference Joseph P, Mandal AK, Singh SK et al (2002) Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol 167:1968–1971CrossRefPubMed Joseph P, Mandal AK, Singh SK et al (2002) Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol 167:1968–1971CrossRefPubMed
14.
go back to reference El-Nahas AR, El-Assmy AM, Mansour O et al (2007) A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution non-contrast computed tomography. Eur Urol 51:1688–1694CrossRefPubMed El-Nahas AR, El-Assmy AM, Mansour O et al (2007) A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution non-contrast computed tomography. Eur Urol 51:1688–1694CrossRefPubMed
15.
go back to reference Ouzaid I, Al-qahtani S, Dominique S et al (2012) A 970 Hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int 110:E438–E442CrossRefPubMed Ouzaid I, Al-qahtani S, Dominique S et al (2012) A 970 Hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int 110:E438–E442CrossRefPubMed
16.
go back to reference Albala DM, Assimos DG, Clayman RV et al (2001) Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J Urol 166(6):2072–2080CrossRefPubMed Albala DM, Assimos DG, Clayman RV et al (2001) Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J Urol 166(6):2072–2080CrossRefPubMed
17.
go back to reference Collado Serra A, Huguet PŽrez J, Monreal Garc’a de Vicu-a F et al (1999) Renal hematoma as a complication of extracorporeal shock wave lithotripsy. Scand J Urol Nephrol 33:171–175CrossRefPubMed Collado Serra A, Huguet PŽrez J, Monreal Garc’a de Vicu-a F et al (1999) Renal hematoma as a complication of extracorporeal shock wave lithotripsy. Scand J Urol Nephrol 33:171–175CrossRefPubMed
18.
go back to reference Lee HY, Yang YH, Shen JT et al (2013) Risk factors survey for extracorporeal shockwave lithotripsy-induced renal hematoma. J Endourol 27:2763–2767 Lee HY, Yang YH, Shen JT et al (2013) Risk factors survey for extracorporeal shockwave lithotripsy-induced renal hematoma. J Endourol 27:2763–2767
19.
20.
go back to reference Razvi H, Fuller A, Nott L et al (2012) Risk factors for perinephric hematoma formation after shockwave lithotripsy: matched case-control analysis. J Endourol 26:1478–1482CrossRefPubMed Razvi H, Fuller A, Nott L et al (2012) Risk factors for perinephric hematoma formation after shockwave lithotripsy: matched case-control analysis. J Endourol 26:1478–1482CrossRefPubMed
21.
go back to reference Chaussy CG, Tiselius H (2012) What you should know about extracorporeal shock wave lithotripsy and how to improve your performance. In: Talati JJ, Tiselius HG, Albala D, Ye Z (eds) Urolithiasis. Springer, London, pp 383–393CrossRef Chaussy CG, Tiselius H (2012) What you should know about extracorporeal shock wave lithotripsy and how to improve your performance. In: Talati JJ, Tiselius HG, Albala D, Ye Z (eds) Urolithiasis. Springer, London, pp 383–393CrossRef
22.
go back to reference Tiselius HG, Chaussy CG (2012) Aspects on how extracorporeal shockwave lithotripsy should be carried out in order to be maximally effective. Urol Res 40:433–446CrossRefPubMed Tiselius HG, Chaussy CG (2012) Aspects on how extracorporeal shockwave lithotripsy should be carried out in order to be maximally effective. Urol Res 40:433–446CrossRefPubMed
23.
go back to reference Bohris C, Roosen A, Dickmann M et al (2012) Monitoring the coupling of the lithotripter head with skin during routine shock wave lithotripsy with a surveillance camera. J Urol 187:157–163CrossRefPubMed Bohris C, Roosen A, Dickmann M et al (2012) Monitoring the coupling of the lithotripter head with skin during routine shock wave lithotripsy with a surveillance camera. J Urol 187:157–163CrossRefPubMed
24.
go back to reference Phipps S, Stephenson C, Tolley D (2013) Extracorporeal shockwave lithotripsy to distal ureteric stones: the transgluteal approach significantly increases stone-free rates. BJU Int 112:E129–E133CrossRefPubMed Phipps S, Stephenson C, Tolley D (2013) Extracorporeal shockwave lithotripsy to distal ureteric stones: the transgluteal approach significantly increases stone-free rates. BJU Int 112:E129–E133CrossRefPubMed
25.
go back to reference Paterson R, Lifshitz DA, Lingeman JE et al (2002) Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. J Urol 168:2211–2215CrossRefPubMed Paterson R, Lifshitz DA, Lingeman JE et al (2002) Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. J Urol 168:2211–2215CrossRefPubMed
26.
go back to reference Pishchalnikov YA, Neuks JS, VonDerHaar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA (2006) Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shockwave energy. J Urol 176(6 Pt 1):2706–2710CrossRefPubMedPubMedCentral Pishchalnikov YA, Neuks JS, VonDerHaar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA (2006) Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shockwave energy. J Urol 176(6 Pt 1):2706–2710CrossRefPubMedPubMedCentral
27.
go back to reference Jain A, Shah TK (2007) Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol 51(6):1680–1686CrossRefPubMed Jain A, Shah TK (2007) Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol 51(6):1680–1686CrossRefPubMed
28.
go back to reference Weaver J, Monga M (2014) Extracorporeal shockwave lithotripsy for upper tract urolithiasis. Curr Opin Urol 24(2):168–172CrossRefPubMed Weaver J, Monga M (2014) Extracorporeal shockwave lithotripsy for upper tract urolithiasis. Curr Opin Urol 24(2):168–172CrossRefPubMed
29.
go back to reference Tiselius HG (2008) How efficient is extracorporeal shockwave lithotripsy with modern lithotripters for removal of ureteral stones? J Endourol 22:249–255CrossRefPubMed Tiselius HG (2008) How efficient is extracorporeal shockwave lithotripsy with modern lithotripters for removal of ureteral stones? J Endourol 22:249–255CrossRefPubMed
30.
go back to reference Evan AP, McAteer JA, Connors BA et al (2007) Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. BJU Int 100:624–627CrossRefPubMed Evan AP, McAteer JA, Connors BA et al (2007) Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. BJU Int 100:624–627CrossRefPubMed
31.
go back to reference Seitz C, Fritsche HM, Siebert T et al (2009) Novel electromagnetic lihotriptor for upper tract stones with and without ureteral stent. J Urol 182:1424–1429CrossRefPubMed Seitz C, Fritsche HM, Siebert T et al (2009) Novel electromagnetic lihotriptor for upper tract stones with and without ureteral stent. J Urol 182:1424–1429CrossRefPubMed
32.
go back to reference Tiselius HG (1991) Anesthesia-free in situ extracorporeal shock wave lithotripsy of ureteral stones. J Urol 146:8–12CrossRefPubMed Tiselius HG (1991) Anesthesia-free in situ extracorporeal shock wave lithotripsy of ureteral stones. J Urol 146:8–12CrossRefPubMed
33.
go back to reference Rasweiller JJ, Knoll T, Kohrmann KU, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C (2011) Shock wave technology and application: an update. Eur Urol 59(5):784–796CrossRef Rasweiller JJ, Knoll T, Kohrmann KU, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C (2011) Shock wave technology and application: an update. Eur Urol 59(5):784–796CrossRef
34.
go back to reference Handa RK, Bailey MR, Paun M et al (2009) Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int 103:1270–1274CrossRefPubMed Handa RK, Bailey MR, Paun M et al (2009) Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int 103:1270–1274CrossRefPubMed
35.
go back to reference Handa RK, McAteer JA, Connors B et al (2012) Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy. BJU Int 110:E1041–E1047CrossRefPubMedPubMedCentral Handa RK, McAteer JA, Connors B et al (2012) Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy. BJU Int 110:E1041–E1047CrossRefPubMedPubMedCentral
36.
go back to reference Bohris C, Bayer T, Gumpinger R (2010) Ultrasound monitoring of kidney stone extracorporeal shock wave lithotripsy with an external transducer: does fatty tissue cause image distortions that affect stone comminution? J Endourol 24:81–88CrossRefPubMed Bohris C, Bayer T, Gumpinger R (2010) Ultrasound monitoring of kidney stone extracorporeal shock wave lithotripsy with an external transducer: does fatty tissue cause image distortions that affect stone comminution? J Endourol 24:81–88CrossRefPubMed
38.
go back to reference Paterson RF, Lifshitz DA, Kuo R et al (2002) Shock wave lithotripsy monotherapy for renal calculi. Int Braz J Urol 28:291–301PubMed Paterson RF, Lifshitz DA, Kuo R et al (2002) Shock wave lithotripsy monotherapy for renal calculi. Int Braz J Urol 28:291–301PubMed
39.
go back to reference Tiselius HG, Aronsen T, Bohgard S et al (2010) Is high diuresis an important prerequisite for successful SWL-disintegration of ureteral stones? Urol Res 38:143–146CrossRefPubMed Tiselius HG, Aronsen T, Bohgard S et al (2010) Is high diuresis an important prerequisite for successful SWL-disintegration of ureteral stones? Urol Res 38:143–146CrossRefPubMed
40.
go back to reference Perks AE, Schuler TD, Lee J et al (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72:765–769CrossRefPubMed Perks AE, Schuler TD, Lee J et al (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72:765–769CrossRefPubMed
41.
go back to reference Thomas R, Cass AS (1993) Extracorporeal shock wave lithotripsy in morbidly obese patients. J Urol 150:30–32CrossRefPubMed Thomas R, Cass AS (1993) Extracorporeal shock wave lithotripsy in morbidly obese patients. J Urol 150:30–32CrossRefPubMed
42.
go back to reference Vakalopoulos I (2009) Development of a mathematical model to predict extracorporeal shockwave lithotripsy outcome. J Endourol 23:891–897CrossRefPubMed Vakalopoulos I (2009) Development of a mathematical model to predict extracorporeal shockwave lithotripsy outcome. J Endourol 23:891–897CrossRefPubMed
43.
go back to reference Pace KT, Ghiculete D, Harju M et al (2005) Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 174:595–599CrossRefPubMed Pace KT, Ghiculete D, Harju M et al (2005) Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 174:595–599CrossRefPubMed
44.
go back to reference Honey RJ, Schuler TD, Ghiculete D et al (2009) A randomized, double-blind trial to compare shock wave frequencies of 60 and 120 shocks per minute for upper ureteral stones. J Urol 182:1418–1423CrossRefPubMed Honey RJ, Schuler TD, Ghiculete D et al (2009) A randomized, double-blind trial to compare shock wave frequencies of 60 and 120 shocks per minute for upper ureteral stones. J Urol 182:1418–1423CrossRefPubMed
45.
go back to reference Davenport K, Minervini A, Keoghane S et al (2006) Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi. J Urol 176:2055–2058CrossRefPubMed Davenport K, Minervini A, Keoghane S et al (2006) Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi. J Urol 176:2055–2058CrossRefPubMed
46.
go back to reference Madbouly K, El-Tiraifi AM, Seida M et al (2005) Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol 173:127–130CrossRefPubMed Madbouly K, El-Tiraifi AM, Seida M et al (2005) Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol 173:127–130CrossRefPubMed
47.
go back to reference Yilmaz E, Batislam E, Basar M et al (2005) Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology 66:1160–1164CrossRefPubMed Yilmaz E, Batislam E, Basar M et al (2005) Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology 66:1160–1164CrossRefPubMed
48.
go back to reference Li K, Lin T, Zhang C et al (2013) Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials. J Urol 190:1260–1267CrossRefPubMed Li K, Lin T, Zhang C et al (2013) Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials. J Urol 190:1260–1267CrossRefPubMed
49.
go back to reference Kato Y, Yamaguchi S, Hori J et al (2006) Improvement of stone comminution by slow delivery rate of shock waves in extracorporeal lithotripsy. Int J Urol 13:1461–1465CrossRefPubMed Kato Y, Yamaguchi S, Hori J et al (2006) Improvement of stone comminution by slow delivery rate of shock waves in extracorporeal lithotripsy. Int J Urol 13:1461–1465CrossRefPubMed
50.
go back to reference Chacko J, Moore M, Sankey N et al (2006) Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J Urol 175:1370–1374CrossRefPubMed Chacko J, Moore M, Sankey N et al (2006) Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J Urol 175:1370–1374CrossRefPubMed
51.
go back to reference Gillitzer R, Neisius A, Wšllner J et al (2009) Low-frequency extracorporeal shock wave lithotripsy improves renal pelvic stone disintegration in a pig model. BJU Int 103:1284–1288CrossRefPubMed Gillitzer R, Neisius A, Wšllner J et al (2009) Low-frequency extracorporeal shock wave lithotripsy improves renal pelvic stone disintegration in a pig model. BJU Int 103:1284–1288CrossRefPubMed
52.
go back to reference Schuler TD, Shahani R, Honey RJ et al (2009) Medical expulsive therapy as an adjunct to improve shockwave lithotripsy outcomes: a systematic review and meta-analysis. J Endourol 23:387–393CrossRefPubMed Schuler TD, Shahani R, Honey RJ et al (2009) Medical expulsive therapy as an adjunct to improve shockwave lithotripsy outcomes: a systematic review and meta-analysis. J Endourol 23:387–393CrossRefPubMed
53.
go back to reference Seitz C, Liatsikos E, Porpiglia F et al (2009) Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol 56:455–471CrossRefPubMed Seitz C, Liatsikos E, Porpiglia F et al (2009) Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol 56:455–471CrossRefPubMed
54.
go back to reference Pace KT, Tariq N, Dyer SJ et al (2001) Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J Urol 166(6):2065–2071CrossRefPubMed Pace KT, Tariq N, Dyer SJ et al (2001) Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J Urol 166(6):2065–2071CrossRefPubMed
55.
go back to reference Leong W, Liong M, Liong Y et al (2014) Does simultaneous inversion during extracorporeal shock wave lithotripsy improve stone clearance: a long-term, prospective, single-blind, randomized controlled study. Urology 83:40–44CrossRefPubMed Leong W, Liong M, Liong Y et al (2014) Does simultaneous inversion during extracorporeal shock wave lithotripsy improve stone clearance: a long-term, prospective, single-blind, randomized controlled study. Urology 83:40–44CrossRefPubMed
56.
go back to reference Liu LR, Li QJ, Wei Q et al (2013) Percussion, diuresis, and inversion therapy for the passage of lower pole kidney stones following shock wave lithotripsy. Cochrane Database Syst Rev 12:CD008569 Liu LR, Li QJ, Wei Q et al (2013) Percussion, diuresis, and inversion therapy for the passage of lower pole kidney stones following shock wave lithotripsy. Cochrane Database Syst Rev 12:CD008569
57.
go back to reference Albanis S, Ather HM, Papatsoris AG et al (2009) Inversion, hydration and diuresis during extracorporeal shock wave lithotripsy: does it improve the stone-free rate for lower pole stone clearance? Urol Int 83:211–216CrossRefPubMed Albanis S, Ather HM, Papatsoris AG et al (2009) Inversion, hydration and diuresis during extracorporeal shock wave lithotripsy: does it improve the stone-free rate for lower pole stone clearance? Urol Int 83:211–216CrossRefPubMed
58.
Metadata
Title
Shockwave lithotripsy: techniques for improving outcomes
Authors
Tadeusz Kroczak
Kymora B. Scotland
Ben Chew
Kenneth T. Pace
Publication date
01-09-2017
Publisher
Springer Berlin Heidelberg
Published in
World Journal of Urology / Issue 9/2017
Print ISSN: 0724-4983
Electronic ISSN: 1433-8726
DOI
https://doi.org/10.1007/s00345-017-2056-y

Other articles of this Issue 9/2017

World Journal of Urology 9/2017 Go to the issue