Skip to main content
Top
Published in: European Radiology 12/2023

Open Access 14-07-2023 | Rectal Cancer | Imaging Informatics and Artificial Intelligence

Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer

Authors: Niels W. Schurink, Simon R. van Kranen, Joost J. M. van Griethuysen, Sander Roberti, Petur Snaebjornsson, Frans C. H. Bakers, Shira H. de Bie, Gerlof P. T. Bosma, Vincent C. Cappendijk, Remy W. F. Geenen, Peter A. Neijenhuis, Gerald M. Peterson, Cornelis J. Veeken, Roy F. A. Vliegen, Femke P. Peters, Nino Bogveradze, Najim el Khababi, Max J. Lahaye, Monique Maas, Geerard L. Beets, Regina G. H. Beets-Tan, Doenja M. J. Lambregts

Published in: European Radiology | Issue 12/2023

Login to get access

Abstract

Objectives

To develop and validate a multiparametric model to predict neoadjuvant treatment response in rectal cancer at baseline using a heterogeneous multicenter MRI dataset.

Methods

Baseline staging MRIs (T2W (T2-weighted)-MRI, diffusion-weighted imaging (DWI) / apparent diffusion coefficient (ADC)) of 509 patients (9 centres) treated with neoadjuvant chemoradiotherapy (CRT) were collected. Response was defined as (1) complete versus incomplete response, or (2) good (Mandard tumor regression grade (TRG) 1–2) versus poor response (TRG3-5). Prediction models were developed using combinations of the following variable groups:
(1) Non-imaging: age/sex/tumor-location/tumor-morphology/CRT-surgery interval
(2) Basic staging: cT-stage/cN-stage/mesorectal fascia involvement, derived from (2a) original staging reports, or (2b) expert re-evaluation
(3) Advanced staging: variables from 2b combined with cTN-substaging/invasion depth/extramural vascular invasion/tumor length
(4) Quantitative imaging: tumour volume + first-order histogram features (from T2W-MRI and DWI/ADC)
Models were developed with data from 6 centers (= 412) using logistic regression with the Least Absolute Shrinkage and Selector Operator (LASSO) feature selection, internally validated using repeated (n = 100) random hold-out validation, and externally validated using data from 3 centers (n = 97).

Results

After external validation, the best model (including non-imaging and advanced staging variables) achieved an area under the curve of 0.60 (95%CI=0.48–0.72) to predict complete response and 0.65 (95%CI=0.53–0.76) to predict a good response. Quantitative variables did not improve model performance. Basic staging variables consistently achieved lower performance compared to advanced staging variables.

Conclusions

Overall model performance was moderate. Best results were obtained using advanced staging variables, highlighting the importance of good-quality staging according to current guidelines. Quantitative imaging features had no added value (in this heterogeneous dataset).

Clinical relevance statement

Predicting tumour response at baseline could aid in tailoring neoadjuvant therapies for rectal cancer. This study shows that image-based prediction models are promising, though are negatively affected by variations in staging quality and MRI acquisition, urging the need for harmonization.

Key Points

  • This multicenter study combining clinical information and features derived from MRI rendered disappointing performance to predict response to neoadjuvant treatment in rectal cancer.
  • Best results were obtained with the combination of clinical baseline information and state-of-the-art image-based staging variables, highlighting the importance of good quality staging according to current guidelines and staging templates.
  • No added value was found for quantitative imaging features in this multicenter retrospective study. This is likely related to acquisition variations, which is a major problem for feature reproducibility and thus model generalizability.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aklilu M, Eng C (2011) The current landscape of locally advanced rectal cancer. Nat Rev Clin Oncol 8:649–659CrossRefPubMed Aklilu M, Eng C (2011) The current landscape of locally advanced rectal cancer. Nat Rev Clin Oncol 8:649–659CrossRefPubMed
2.
go back to reference Maas M, Nelemans PJ, Valentini V et al (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11:835–844CrossRefPubMed Maas M, Nelemans PJ, Valentini V et al (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11:835–844CrossRefPubMed
3.
go back to reference López-Campos F, Martín-Martín M, Fornell-Pérez R et al (2020) Watch and wait approach in rectal cancer: current controversies and future directions. World J Gastroenterol 26:4218–4239CrossRefPubMedPubMedCentral López-Campos F, Martín-Martín M, Fornell-Pérez R et al (2020) Watch and wait approach in rectal cancer: current controversies and future directions. World J Gastroenterol 26:4218–4239CrossRefPubMedPubMedCentral
4.
go back to reference van der Valk MJM, Hilling DE, Bastiaannet E et al (2018) Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. Lancet 391:2537–2545CrossRefPubMed van der Valk MJM, Hilling DE, Bastiaannet E et al (2018) Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. Lancet 391:2537–2545CrossRefPubMed
5.
go back to reference Staal FCR, van der Reijd DJ, Taghavi M et al (2021) Radiomics for the prediction of treatment outcome and survival in patients with colorectal cancer: a systematic review. Clin Colorectal Cancer 20:52–71CrossRefPubMed Staal FCR, van der Reijd DJ, Taghavi M et al (2021) Radiomics for the prediction of treatment outcome and survival in patients with colorectal cancer: a systematic review. Clin Colorectal Cancer 20:52–71CrossRefPubMed
6.
go back to reference Huang Y, Lee D, Young C (2020) Predictors for complete pathological response for stage II and III rectal cancer following neoadjuvant therapy - a systematic review and meta-analysis. Am J Surg 220:300–308CrossRefPubMed Huang Y, Lee D, Young C (2020) Predictors for complete pathological response for stage II and III rectal cancer following neoadjuvant therapy - a systematic review and meta-analysis. Am J Surg 220:300–308CrossRefPubMed
7.
go back to reference Fischer J, Eglinton TW, Richards SJG, Frizelle FA (2021) Predicting pathological response to chemoradiotherapy for rectal cancer: a systematic review. Expert Rev Anticancer Ther 21:489–500CrossRefPubMed Fischer J, Eglinton TW, Richards SJG, Frizelle FA (2021) Predicting pathological response to chemoradiotherapy for rectal cancer: a systematic review. Expert Rev Anticancer Ther 21:489–500CrossRefPubMed
8.
go back to reference Schurink NW, Lambregts DMJ, Beets-Tan RGH (2019) Diffusion-weighted imaging in rectal cancer: current applications and future perspectives. Br J Radiol 92:20180655CrossRefPubMedPubMedCentral Schurink NW, Lambregts DMJ, Beets-Tan RGH (2019) Diffusion-weighted imaging in rectal cancer: current applications and future perspectives. Br J Radiol 92:20180655CrossRefPubMedPubMedCentral
9.
go back to reference Joye I, Deroose CM, Vandecaveye V, Haustermans K (2014) The role of diffusion-weighted MRI and 18F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol 113:158–165CrossRefPubMed Joye I, Deroose CM, Vandecaveye V, Haustermans K (2014) The role of diffusion-weighted MRI and 18F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol 113:158–165CrossRefPubMed
10.
go back to reference Curvo-Semedo L, Lambregts DMJ, Maas M et al (2011) Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy—conventional MR volumetry versus diffusion-weighted MR imaging. Radiology 260:734–743CrossRefPubMed Curvo-Semedo L, Lambregts DMJ, Maas M et al (2011) Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy—conventional MR volumetry versus diffusion-weighted MR imaging. Radiology 260:734–743CrossRefPubMed
11.
go back to reference Lambregts DMJ, Rao S-X, Sassen S et al (2015) MRI and diffusion-weighted MRI volumetry for identification of complete tumor responders after preoperative chemoradiotherapy in patients with rectal cancer. Ann Surg 262:1034–1039CrossRefPubMed Lambregts DMJ, Rao S-X, Sassen S et al (2015) MRI and diffusion-weighted MRI volumetry for identification of complete tumor responders after preoperative chemoradiotherapy in patients with rectal cancer. Ann Surg 262:1034–1039CrossRefPubMed
12.
go back to reference Ha HI, Kim AY, Yu CS et al (2013) Locally advanced rectal cancer: diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. Eur Radiol 23:3345–3353CrossRefPubMed Ha HI, Kim AY, Yu CS et al (2013) Locally advanced rectal cancer: diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. Eur Radiol 23:3345–3353CrossRefPubMed
13.
go back to reference Dijkhoff RAP, Beets-Tan RGH, Lambregts DMJ et al (2017) Value of DCE-MRI for staging and response evaluation in rectal cancer: a systematic review. Eur J Radiol 95:155–168CrossRefPubMed Dijkhoff RAP, Beets-Tan RGH, Lambregts DMJ et al (2017) Value of DCE-MRI for staging and response evaluation in rectal cancer: a systematic review. Eur J Radiol 95:155–168CrossRefPubMed
14.
go back to reference van Griethuysen JJM, Lambregts DMJ, Trebeschi S et al (2020) Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer. Abdom Radiol (NY) 45:632–643CrossRefPubMed van Griethuysen JJM, Lambregts DMJ, Trebeschi S et al (2020) Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer. Abdom Radiol (NY) 45:632–643CrossRefPubMed
15.
go back to reference Antunes JT, Ofshteyn A, Bera K et al (2020) Radiomic features of primary rectal cancers on baseline T 2 -weighted MRI are associated with pathologic complete response to neoadjuvant chemoradiation: a multisite study. J Magn Reson Imaging 52:1531–1541CrossRefPubMedPubMedCentral Antunes JT, Ofshteyn A, Bera K et al (2020) Radiomic features of primary rectal cancers on baseline T 2 -weighted MRI are associated with pathologic complete response to neoadjuvant chemoradiation: a multisite study. J Magn Reson Imaging 52:1531–1541CrossRefPubMedPubMedCentral
16.
17.
go back to reference Beets-Tan RGH, Lambregts DMJ, Maas M et al (2018) Magnetic resonance imaging for clinical management of rectal cancer: updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 28:1465–1475CrossRefPubMed Beets-Tan RGH, Lambregts DMJ, Maas M et al (2018) Magnetic resonance imaging for clinical management of rectal cancer: updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 28:1465–1475CrossRefPubMed
19.
go back to reference Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol 102:1143–1158CrossRef Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol 102:1143–1158CrossRef
20.
go back to reference Traverso A, Kazmierski M, Shi Z et al (2019) Stability of radiomic features of apparent diffusion coefficient (ADC) maps for locally advanced rectal cancer in response to image pre-processing. Phys Med 61:44–51CrossRefPubMed Traverso A, Kazmierski M, Shi Z et al (2019) Stability of radiomic features of apparent diffusion coefficient (ADC) maps for locally advanced rectal cancer in response to image pre-processing. Phys Med 61:44–51CrossRefPubMed
21.
go back to reference Fiset S, Welch ML, Weiss J et al (2019) Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother Oncol 135:107–114CrossRefPubMed Fiset S, Welch ML, Weiss J et al (2019) Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother Oncol 135:107–114CrossRefPubMed
22.
go back to reference Yuan J, Xue C, Lo G et al (2021) Quantitative assessment of acquisition imaging parameters on MRI radiomics features: a prospective anthropomorphic phantom study using a 3D-T2W-TSE sequence for MR-guided-radiotherapy. Quant Imaging Med Surg 11:1870–1887CrossRefPubMedPubMedCentral Yuan J, Xue C, Lo G et al (2021) Quantitative assessment of acquisition imaging parameters on MRI radiomics features: a prospective anthropomorphic phantom study using a 3D-T2W-TSE sequence for MR-guided-radiotherapy. Quant Imaging Med Surg 11:1870–1887CrossRefPubMedPubMedCentral
23.
go back to reference Mi H, Yuan M, Suo S et al (2020) Impact of different scanners and acquisition parameters on robustness of MR radiomics features based on women’s cervix. Sci Rep 10:20407CrossRefPubMedPubMedCentral Mi H, Yuan M, Suo S et al (2020) Impact of different scanners and acquisition parameters on robustness of MR radiomics features based on women’s cervix. Sci Rep 10:20407CrossRefPubMedPubMedCentral
24.
go back to reference Xie H, Sun T, Chen M et al (2015) Effectiveness of the apparent diffusion coefficient for predicting the response to chemoradiation therapy in locally advanced rectal cancer. Medicine (Baltimore) 94:e517CrossRefPubMed Xie H, Sun T, Chen M et al (2015) Effectiveness of the apparent diffusion coefficient for predicting the response to chemoradiation therapy in locally advanced rectal cancer. Medicine (Baltimore) 94:e517CrossRefPubMed
25.
go back to reference Maffione AM, Marzola MC, Capirci C et al (2015) Value of 18 F-FDG PET for predicting response to neoadjuvant therapy in rectal cancer: systematic review and meta-analysis. AJR Am J Roentgenol 204:1261–1268CrossRefPubMed Maffione AM, Marzola MC, Capirci C et al (2015) Value of 18 F-FDG PET for predicting response to neoadjuvant therapy in rectal cancer: systematic review and meta-analysis. AJR Am J Roentgenol 204:1261–1268CrossRefPubMed
26.
go back to reference Tibshirani R (1994) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58:267–288 Tibshirani R (1994) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58:267–288
27.
go back to reference Delong ER, Carolina N (1988) Comparing the areas under two or more correlated receiver operating characteristic curves : a nonparametric approach. Biometrics 44:837–845CrossRefPubMed Delong ER, Carolina N (1988) Comparing the areas under two or more correlated receiver operating characteristic curves : a nonparametric approach. Biometrics 44:837–845CrossRefPubMed
28.
go back to reference Koc Z, Erbay G, Karadeli E (2017) Internal comparison standard for abdominal diffusion-weighted imaging. Acta Radiol 58:1029–1036CrossRefPubMed Koc Z, Erbay G, Karadeli E (2017) Internal comparison standard for abdominal diffusion-weighted imaging. Acta Radiol 58:1029–1036CrossRefPubMed
29.
go back to reference Orlhac F, Lecler A, Savatovski J et al (2021) How can we combat multicenter variability in MR radiomics? Validation of a correction procedure. Eur Radiol 31:2272–2280CrossRefPubMed Orlhac F, Lecler A, Savatovski J et al (2021) How can we combat multicenter variability in MR radiomics? Validation of a correction procedure. Eur Radiol 31:2272–2280CrossRefPubMed
30.
31.
go back to reference Yang C, Jiang Z-K, Liu L-H, Zeng M-S (2020) Pre-treatment ADC image-based random forest classifier for identifying resistant rectal adenocarcinoma to neoadjuvant chemoradiotherapy. Int J Color Dis 35:101–107CrossRef Yang C, Jiang Z-K, Liu L-H, Zeng M-S (2020) Pre-treatment ADC image-based random forest classifier for identifying resistant rectal adenocarcinoma to neoadjuvant chemoradiotherapy. Int J Color Dis 35:101–107CrossRef
32.
go back to reference Yi X, Pei Q, Zhang Y et al (2019) MRI-based radiomics predicts tumor response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Front Oncol 9:1–10CrossRef Yi X, Pei Q, Zhang Y et al (2019) MRI-based radiomics predicts tumor response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Front Oncol 9:1–10CrossRef
34.
go back to reference Chalkidou A, O’Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One 10:1–18CrossRef Chalkidou A, O’Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One 10:1–18CrossRef
35.
go back to reference Zwanenburg A (2019) Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 46:2638–2655CrossRefPubMed Zwanenburg A (2019) Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 46:2638–2655CrossRefPubMed
36.
go back to reference Sanduleanu S, Woodruff HC, de Jong EEC et al (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127:349–360CrossRefPubMed Sanduleanu S, Woodruff HC, de Jong EEC et al (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127:349–360CrossRefPubMed
39.
go back to reference Dayde D, Tanaka I, Jain R et al (2017) Predictive and prognostic molecular biomarkers for response to neoadjuvant chemoradiation in rectal cancer. Int J Mol Sci 18:573CrossRefPubMedPubMedCentral Dayde D, Tanaka I, Jain R et al (2017) Predictive and prognostic molecular biomarkers for response to neoadjuvant chemoradiation in rectal cancer. Int J Mol Sci 18:573CrossRefPubMedPubMedCentral
40.
go back to reference El Sissy C, Kirilovsky A, Van den Eynde M et al (2020) A diagnostic biopsy-adapted immunoscore predicts response to neoadjuvant treatment and selects patients with rectal cancer eligible for a watch-and-wait strategy. Clin Cancer Res 26:5198–5207CrossRefPubMed El Sissy C, Kirilovsky A, Van den Eynde M et al (2020) A diagnostic biopsy-adapted immunoscore predicts response to neoadjuvant treatment and selects patients with rectal cancer eligible for a watch-and-wait strategy. Clin Cancer Res 26:5198–5207CrossRefPubMed
41.
go back to reference Massihnia D, Pizzutilo EG, Amatu A et al (2019) Liquid biopsy for rectal cancer: a systematic review. Cancer Treat Rev 79:101893CrossRefPubMed Massihnia D, Pizzutilo EG, Amatu A et al (2019) Liquid biopsy for rectal cancer: a systematic review. Cancer Treat Rev 79:101893CrossRefPubMed
42.
go back to reference Jia H, Shen X, Guan Y et al (2018) Predicting the pathological response to neoadjuvant chemoradiation using untargeted metabolomics in locally advanced rectal cancer. Radiother Oncol 128:548–556CrossRefPubMed Jia H, Shen X, Guan Y et al (2018) Predicting the pathological response to neoadjuvant chemoradiation using untargeted metabolomics in locally advanced rectal cancer. Radiother Oncol 128:548–556CrossRefPubMed
44.
go back to reference Yuan Z, Frazer M, Ahmed KA et al (2020) Modeling precision genomic-based radiation dose response in rectal cancer. Future Oncol 16:2411–2420CrossRefPubMed Yuan Z, Frazer M, Ahmed KA et al (2020) Modeling precision genomic-based radiation dose response in rectal cancer. Future Oncol 16:2411–2420CrossRefPubMed
Metadata
Title
Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
Authors
Niels W. Schurink
Simon R. van Kranen
Joost J. M. van Griethuysen
Sander Roberti
Petur Snaebjornsson
Frans C. H. Bakers
Shira H. de Bie
Gerlof P. T. Bosma
Vincent C. Cappendijk
Remy W. F. Geenen
Peter A. Neijenhuis
Gerald M. Peterson
Cornelis J. Veeken
Roy F. A. Vliegen
Femke P. Peters
Nino Bogveradze
Najim el Khababi
Max J. Lahaye
Monique Maas
Geerard L. Beets
Regina G. H. Beets-Tan
Doenja M. J. Lambregts
Publication date
14-07-2023
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 12/2023
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-023-09920-6

Other articles of this Issue 12/2023

European Radiology 12/2023 Go to the issue