Skip to main content
Top
Published in: European Radiology 2/2021

01-02-2021 | NSCLC | Imaging Informatics and Artificial Intelligence

Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images

Authors: Ji Zhang, Juebin Jin, Yao Ai, Kecheng Zhu, Chengjian Xiao, Congying Xie, Xiance Jin

Published in: European Radiology | Issue 2/2021

Login to get access

Abstract

Objectives

It is of high clinical importance to identify the primary lesion and its pathological types for patients with brain metastases (BM). The purpose of this study is to investigate the feasibility and accuracy of differentiating the primary adenocarcinoma (AD) and squamous cell carcinoma (SCC) of non-small-cell lung cancer (NSCLC) for patients with BM based on radiomics from brain contrast-enhanced computer tomography (CECT) images.

Methods

A total of 144 BM patients (94 male, 50 female) were enrolled in this study with 102 with primary lung AD and 42 with SCC, respectively. Radiomics features from manually contoured tumors were extracted using python. Mann–Whitney U test and the least absolute shrinkage and selection operator (LASSO) logistic regression were applied to select relative radiomics features. Binary logistic regression and support vector machines (SVM) were applied to build models with radiomics features alone and with radiomics features plus age and sex.

Results

Fourteen features were selected from a total of 105 radiomics features for the final model building. The area under the curves (AUCs) and accuracy of SVM and binary logistic regression models were 0.765 vs. 0.769, 0.795 vs.0.828, and 0.716 vs. 0.726, 0.768 vs. 0.758, respectively, for models with radiomics features alone and models with radiomics features plus sex and age.

Conclusions

Brain CECT radiomics are promising in differentiating primary AD and SCC to achieve optimal therapeutic management in patients with BM from NSCLC.

Key Points

It is of high clinical importance to identify the primary lesion and its pathological types for patients with brain metastases (BM) to define the prognosis and treatment.
Few studies had investigated the feasibility and accuracy of differentiating the pathological subtypes of primary non-small-cell lung cancer between adenocarcinoma (AD) and squamous cell carcinoma (SCC) for patients with BM based on radiomics from brain contrast-enhanced CT (CECT) images, although CECT images are often the initial imaging modality to screen for metastases and are recommended on equal footing with MRI for the detection of cerebral metastases.
• Brain CECT radiomics are promising in differentiating primary AD and SCC to achieve optimal therapeutic management in patients with BM from NSCLC with a highest area under the curve (AUC) of 0.828 and an accuracy of 0.758, respectively.
Literature
1.
go back to reference Norden AD, Wen PY, Kesari S (2005) Brain metastases. Curr Opin Neurol 18(6):654–661PubMed Norden AD, Wen PY, Kesari S (2005) Brain metastases. Curr Opin Neurol 18(6):654–661PubMed
2.
go back to reference Wen PY, Black PM, Loeffler JS (2001) Metastatic brain cancer. In: DeVita V, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology, 6th edn. Lippincott, WIlliams, Philadelphia, pp 2655–2670 Wen PY, Black PM, Loeffler JS (2001) Metastatic brain cancer. In: DeVita V, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology, 6th edn. Lippincott, WIlliams, Philadelphia, pp 2655–2670
3.
go back to reference Greenberg H, Chandler WF, Sandler HM (1999) Brain metastases. In: Brain Tumors. Oxford University Press, New York, pp 299–317 Greenberg H, Chandler WF, Sandler HM (1999) Brain metastases. In: Brain Tumors. Oxford University Press, New York, pp 299–317
4.
go back to reference Zimm S, Wampler GL, Stablein D, Hazra T, Young HF (1981) Intracerebral metastases in solid-tumor patients: natural history and results of treatment. Cancer 48(2):384–394CrossRef Zimm S, Wampler GL, Stablein D, Hazra T, Young HF (1981) Intracerebral metastases in solid-tumor patients: natural history and results of treatment. Cancer 48(2):384–394CrossRef
5.
go back to reference Sundström JT, Minn H, Lertola KK, Nordman E (1998) Prognosis of patients treated for intracranial metastases with whole-brain irradiation. Ann Med 30(3):296–299CrossRef Sundström JT, Minn H, Lertola KK, Nordman E (1998) Prognosis of patients treated for intracranial metastases with whole-brain irradiation. Ann Med 30(3):296–299CrossRef
6.
go back to reference Gore ME, Szczylik C, Porta C et al (2009) Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: an expanded-access trial. Lancet Oncol 10(8):757e63CrossRef Gore ME, Szczylik C, Porta C et al (2009) Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: an expanded-access trial. Lancet Oncol 10(8):757e63CrossRef
7.
go back to reference Robinson SD, O’Shaughnessy JA, Lance Cowey C, Konduri K (2014) BRAFV600E-mutated lung adenocarcinoma with metastases to the brain responding to treatment with vemurafenib. Lung Cancer 85(2):326e30CrossRef Robinson SD, O’Shaughnessy JA, Lance Cowey C, Konduri K (2014) BRAFV600E-mutated lung adenocarcinoma with metastases to the brain responding to treatment with vemurafenib. Lung Cancer 85(2):326e30CrossRef
8.
go back to reference Bachelot T, Romieu G, Campone M et al (2013) Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol 14(1):64e71CrossRef Bachelot T, Romieu G, Campone M et al (2013) Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol 14(1):64e71CrossRef
9.
go back to reference Margolin K, Ernstoff MS, Hamid O et al (2012) Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 13(5):459e65CrossRef Margolin K, Ernstoff MS, Hamid O et al (2012) Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 13(5):459e65CrossRef
10.
go back to reference Drlicek M, Bodenteich A, Urbanits S, Grisold W (2004) Immunohistochemical panel of antibodies in the diagnosis of brain metastases of the unknown primary. Pathol Res Pract 200(10):727–734CrossRef Drlicek M, Bodenteich A, Urbanits S, Grisold W (2004) Immunohistochemical panel of antibodies in the diagnosis of brain metastases of the unknown primary. Pathol Res Pract 200(10):727–734CrossRef
11.
go back to reference Soffietti R, Cornu P, Delattre JY et al (2006) EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol 13:674–681CrossRef Soffietti R, Cornu P, Delattre JY et al (2006) EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol 13:674–681CrossRef
12.
go back to reference Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594CrossRef Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594CrossRef
13.
go back to reference Kim HS, Mitsudomi T, Soo RA, Cho BC (2013) Personalized therapy on the horizon for squamous cell carcinoma of the lung. Lung Cancer 80(3):249–255CrossRef Kim HS, Mitsudomi T, Soo RA, Cho BC (2013) Personalized therapy on the horizon for squamous cell carcinoma of the lung. Lung Cancer 80(3):249–255CrossRef
14.
go back to reference Sperduto PW, Yang TJ, Beal K et al (2017) Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (LungmolGPA). JAMA Oncol 3(6):827e31CrossRef Sperduto PW, Yang TJ, Beal K et al (2017) Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (LungmolGPA). JAMA Oncol 3(6):827e31CrossRef
15.
go back to reference Wu CC, Maher MM, Shepard JA (2011) Complications of CT-guided percutaneous needle biopsy of the chest: prevention and management. AJR Am J Roentgenol 196(6):W678–W682CrossRef Wu CC, Maher MM, Shepard JA (2011) Complications of CT-guided percutaneous needle biopsy of the chest: prevention and management. AJR Am J Roentgenol 196(6):W678–W682CrossRef
16.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef
17.
go back to reference Kniep HC, Madesta F, Schneider T et al (2019) Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology 290(2):479–487CrossRef Kniep HC, Madesta F, Schneider T et al (2019) Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology 290(2):479–487CrossRef
18.
go back to reference Li Z, Mao Y, Li H, Yu G, Wan H, Li B (2016) Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med 76(5):1410–1419CrossRef Li Z, Mao Y, Li H, Yu G, Wan H, Li B (2016) Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med 76(5):1410–1419CrossRef
19.
go back to reference Silvestri GA, Gould MK, Margolis ML et al (2007) Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 132(3 suppl):178S–1201SCrossRef Silvestri GA, Gould MK, Margolis ML et al (2007) Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 132(3 suppl):178S–1201SCrossRef
20.
go back to reference Barajas RF, Cha S (2012) Imaging diagnosis of brain metastasis. Prog Neurol Surg 25:55–73CrossRef Barajas RF, Cha S (2012) Imaging diagnosis of brain metastasis. Prog Neurol Surg 25:55–73CrossRef
21.
go back to reference Van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107CrossRef Van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107CrossRef
22.
go back to reference Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1CrossRef Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1CrossRef
23.
go back to reference Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167CrossRef Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167CrossRef
24.
go back to reference Agazzi S, Pampallona S, Pica A et al (2004) The origin of brain metastases in patients with an undiagnosed primary tumour. Acta Neurochir (Wien) 146(2):153–157 Agazzi S, Pampallona S, Pica A et al (2004) The origin of brain metastases in patients with an undiagnosed primary tumour. Acta Neurochir (Wien) 146(2):153–157
25.
go back to reference Jin J, Zhou X, Liang X et al (2013) Brain metastases as the first symptom of lung cancer: a clinical study from an Asian medical center. J Cancer Res Clin Oncol 139(3):403–408CrossRef Jin J, Zhou X, Liang X et al (2013) Brain metastases as the first symptom of lung cancer: a clinical study from an Asian medical center. J Cancer Res Clin Oncol 139(3):403–408CrossRef
26.
go back to reference Giese A, Westphal M (2001) Treatment of malignant glioma: A problem beyond the margins of resection. J Cancer Res Clin Oncol 127:217–225CrossRef Giese A, Westphal M (2001) Treatment of malignant glioma: A problem beyond the margins of resection. J Cancer Res Clin Oncol 127:217–225CrossRef
27.
go back to reference Kawaguchi KR, Lu FI, Kaplan R et al (2014) In search of the ideal immunopanel to distinguish metastatic mammary carcinoma from primary lung carcinoma: a tissue microarray study of 207 cases. Appl Immunohistochem Mol Morphol 22(4):266–274CrossRef Kawaguchi KR, Lu FI, Kaplan R et al (2014) In search of the ideal immunopanel to distinguish metastatic mammary carcinoma from primary lung carcinoma: a tissue microarray study of 207 cases. Appl Immunohistochem Mol Morphol 22(4):266–274CrossRef
28.
go back to reference Bekaert L, Emery E, Levallet G, Lechapt-Zalcman E (2017) Histopathologic diagnosis of brain metastases: current trends in management and future considerations. Brain Tumor Pathol 34(1):8–19CrossRef Bekaert L, Emery E, Levallet G, Lechapt-Zalcman E (2017) Histopathologic diagnosis of brain metastases: current trends in management and future considerations. Brain Tumor Pathol 34(1):8–19CrossRef
29.
go back to reference Malone H, Yang J, Hershman DL, Wright JD, Bruce JN, Neugut AI (2015) Complications following stereotactic needle biopsy of intracranial tumors. World Neurosurg 84:1084–1089CrossRef Malone H, Yang J, Hershman DL, Wright JD, Bruce JN, Neugut AI (2015) Complications following stereotactic needle biopsy of intracranial tumors. World Neurosurg 84:1084–1089CrossRef
30.
go back to reference Chand P, Amit S, Gupta R, Agarwal A (2016) Errors, limitations, and pitfalls in the diagnosis of central and peripheral nervous system lesions in intraoperative cytology and frozen sections. J Cytol 33:93 Chand P, Amit S, Gupta R, Agarwal A (2016) Errors, limitations, and pitfalls in the diagnosis of central and peripheral nervous system lesions in intraoperative cytology and frozen sections. J Cytol 33:93
Metadata
Title
Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images
Authors
Ji Zhang
Juebin Jin
Yao Ai
Kecheng Zhu
Chengjian Xiao
Congying Xie
Xiance Jin
Publication date
01-02-2021
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 2/2021
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-020-07183-z

Other articles of this Issue 2/2021

European Radiology 2/2021 Go to the issue