Skip to main content
Top
Published in: European Radiology 10/2017

Open Access 01-10-2017 | Musculoskeletal

Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study

Authors: Robbert W. van Hamersvelt, Arnold M. R. Schilham, Klaus Engelke, Annemarie M. den Harder, Bart de Keizer, Harald J. Verhaar, Tim Leiner, Pim A. de Jong, Martin J. Willemink

Published in: European Radiology | Issue 10/2017

Login to get access

Abstract

Objectives

To investigate the accuracy of bone mineral density (BMD) quantification using dual-layer spectral detector CT (SDCT) at various scan protocols.

Methods

Two validated anthropomorphic phantoms containing inserts of 50–200 mg/cm3 calcium hydroxyapatite (HA) were scanned using a 64-slice SDCT scanner at various acquisition protocols (120 and 140 kVp, and 50, 100 and 200 mAs). Regions of interest (ROIs) were placed in each insert and mean attenuation profiles at monochromatic energy levels (90–200 keV) were constructed. These profiles were fitted to attenuation profiles of pure HA and water to calculate HA concentrations. For comparison, one phantom was scanned using dual energy X-ray absorptiometry (DXA).

Results

At both 120 and 140 kVp, excellent correlations (R = 0.97, P < 0.001) were found between true and measured HA concentrations. Mean error for all measurements at 120 kVp was -5.6 ± 5.7 mg/cm3 (-3.6 ± 3.2%) and at 140 kVp -2.4 ± 3.7 mg/cm3 (-0.8 ± 2.8%). Mean measurement errors were smaller than 6% for all acquisition protocols. Strong linear correlations (R2 ≥ 0.970, P < 0.001) with DXA were found.

Conclusions

SDCT allows for accurate BMD quantification and potentially opens up the possibility for osteoporosis evaluation and opportunistic screening in patients undergoing SDCT for other clinical indications. However, patient studies are needed to extend and translate our findings.

Key points

Dual-layer spectral detector CT allows for accurate bone mineral density quantification.
BMD measurements on SDCT are strongly linearly correlated to DXA.
SDCT, acquired for several indications, may allow for evaluation of osteoporosis.
This potentially opens up the possibility for opportunistic osteoporosis screening.
Literature
1.
go back to reference Sànchez-Riera L, Carnahan E, Vos T et al (2014) The global burden attributable to low bone mineral density. Ann Rheum Dis 73:1635–1645CrossRefPubMed Sànchez-Riera L, Carnahan E, Vos T et al (2014) The global burden attributable to low bone mineral density. Ann Rheum Dis 73:1635–1645CrossRefPubMed
2.
go back to reference Buckens CF, van der Graaf Y, Verkooijen HM et al (2015) Osteoporosis markers on low-dose lung cancer screening chest computed tomography scans predict all-cause mortality. Eur Radiol 25:132–139CrossRefPubMed Buckens CF, van der Graaf Y, Verkooijen HM et al (2015) Osteoporosis markers on low-dose lung cancer screening chest computed tomography scans predict all-cause mortality. Eur Radiol 25:132–139CrossRefPubMed
4.
go back to reference Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381CrossRefPubMed Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381CrossRefPubMed
5.
go back to reference Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 15:847–854CrossRefPubMed Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 15:847–854CrossRefPubMed
6.
go back to reference Engelke K, Adams JE, Armbrecht G et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom 11:123–162CrossRefPubMed Engelke K, Adams JE, Armbrecht G et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom 11:123–162CrossRefPubMed
7.
go back to reference Buckens CF, Dijkhuis G, de Keizer B et al (2015) Opportunistic screening for osteoporosis on routine computed tomography? An external validation study. Eur Radiol 25:2074–2079CrossRefPubMed Buckens CF, Dijkhuis G, de Keizer B et al (2015) Opportunistic screening for osteoporosis on routine computed tomography? An external validation study. Eur Radiol 25:2074–2079CrossRefPubMed
8.
go back to reference Pickhardt PJ, Pooler BD, Lauder T et al (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158:588–595CrossRefPubMedPubMedCentral Pickhardt PJ, Pooler BD, Lauder T et al (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158:588–595CrossRefPubMedPubMedCentral
9.
go back to reference Romme EAPM, Murchison JT, Phang KF et al (2012) Bone attenuation on routine chest CT correlates with bone mineral density on DXA in patients with COPD. J Bone Miner Res 27:2338–2343CrossRefPubMed Romme EAPM, Murchison JT, Phang KF et al (2012) Bone attenuation on routine chest CT correlates with bone mineral density on DXA in patients with COPD. J Bone Miner Res 27:2338–2343CrossRefPubMed
10.
go back to reference Engelke K, Lang T, Khosla S et al (2015) Clinical Use of Quantitative Computed Tomography-Based Advanced Techniques in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part III. J Clin Densitom 18:393–407CrossRefPubMed Engelke K, Lang T, Khosla S et al (2015) Clinical Use of Quantitative Computed Tomography-Based Advanced Techniques in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part III. J Clin Densitom 18:393–407CrossRefPubMed
11.
go back to reference Pompe E, Willemink MJ, Dijkhuis GR et al (2015) Intravenous contrast injection significantly affects bone mineral density measured on CT. Eur Radiol 25:283–289CrossRefPubMed Pompe E, Willemink MJ, Dijkhuis GR et al (2015) Intravenous contrast injection significantly affects bone mineral density measured on CT. Eur Radiol 25:283–289CrossRefPubMed
12.
go back to reference Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551CrossRefPubMed Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551CrossRefPubMed
13.
go back to reference Goodsitt MM, Rosenthal DI, Reinus WR, Coumas J (1987) Two postprocessing CT techniques for determining the composition of trabecular bone. Invest Radiol 22:209–215CrossRefPubMed Goodsitt MM, Rosenthal DI, Reinus WR, Coumas J (1987) Two postprocessing CT techniques for determining the composition of trabecular bone. Invest Radiol 22:209–215CrossRefPubMed
14.
go back to reference Garner HW, Paturzo MM, Gaudier G et al (2017) Variation in Attenuation in L1 Trabecular Bone at Different Tube Voltages: Caution Is Warranted When Screening for Osteoporosis With the Use of Opportunistic CT. AJR Am J Roentgenol 208:165–170CrossRefPubMed Garner HW, Paturzo MM, Gaudier G et al (2017) Variation in Attenuation in L1 Trabecular Bone at Different Tube Voltages: Caution Is Warranted When Screening for Osteoporosis With the Use of Opportunistic CT. AJR Am J Roentgenol 208:165–170CrossRefPubMed
15.
go back to reference Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744CrossRefPubMed Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744CrossRefPubMed
16.
go back to reference Vetter JR, Perman WH, Kalender WA et al (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys 13:340–343CrossRefPubMed Vetter JR, Perman WH, Kalender WA et al (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys 13:340–343CrossRefPubMed
17.
go back to reference Nickoloff EL, Feldman F, Atherton JV (1988) Bone mineral assessment: new dual-energy CT approach. Radiology 168:223–228CrossRefPubMed Nickoloff EL, Feldman F, Atherton JV (1988) Bone mineral assessment: new dual-energy CT approach. Radiology 168:223–228CrossRefPubMed
18.
go back to reference Kalender WA, Klotz E, Suess C (1987) Vertebral bone mineral analysis: an integrated approach with CT. Radiology 164:419–423CrossRefPubMed Kalender WA, Klotz E, Suess C (1987) Vertebral bone mineral analysis: an integrated approach with CT. Radiology 164:419–423CrossRefPubMed
19.
go back to reference Coumans J, Kosanetzky J, Zonneveld FW (1982) Computerized dual-energy imaging: a technical description. Medicamundi 27:125–132 Coumans J, Kosanetzky J, Zonneveld FW (1982) Computerized dual-energy imaging: a technical description. Medicamundi 27:125–132
20.
go back to reference Wesarg S, Kirschner M, Becker M et al (2012) Dual-energy CT-based assessment of the trabecular bone in vertebrae. Methods Inf Med 51:398–405CrossRefPubMed Wesarg S, Kirschner M, Becker M et al (2012) Dual-energy CT-based assessment of the trabecular bone in vertebrae. Methods Inf Med 51:398–405CrossRefPubMed
21.
go back to reference Wichmann JL, Booz C, Wesarg S et al (2014) Dual-energy CT-based phantomless in vivo three-dimensional bone mineral density assessment of the lumbar spine. Radiology 271:778–784CrossRefPubMed Wichmann JL, Booz C, Wesarg S et al (2014) Dual-energy CT-based phantomless in vivo three-dimensional bone mineral density assessment of the lumbar spine. Radiology 271:778–784CrossRefPubMed
22.
go back to reference Hofmann P, Sedlmair M, Krauss B, et al. (2016) Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition. In: Tourassi GD, Armato SG (eds). International Society for Optics and Photonics, p 97853E Hofmann P, Sedlmair M, Krauss B, et al. (2016) Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition. In: Tourassi GD, Armato SG (eds). International Society for Optics and Photonics, p 97853E
23.
go back to reference Wait JMS, Cody D, Jones AK et al (2015) Performance Evaluation of Material Decomposition With Rapid-Kilovoltage-Switching Dual-Energy CT and Implications for Assessing Bone Mineral Density. AJR Am J Roentgenol 204:1234–1241CrossRefPubMed Wait JMS, Cody D, Jones AK et al (2015) Performance Evaluation of Material Decomposition With Rapid-Kilovoltage-Switching Dual-Energy CT and Implications for Assessing Bone Mineral Density. AJR Am J Roentgenol 204:1234–1241CrossRefPubMed
24.
go back to reference Kalender WA, Felsenberg D, Genant HK et al (1995) The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20:83–92CrossRefPubMed Kalender WA, Felsenberg D, Genant HK et al (1995) The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20:83–92CrossRefPubMed
25.
go back to reference Deak PD, Smal Y, Kalender WA (2010) Multisection CT Protocols: Sex- and Age-specific Conversion Factors Used to Determine Effective Dose from Dose-Length Product. Radiology 257:158–166CrossRefPubMed Deak PD, Smal Y, Kalender WA (2010) Multisection CT Protocols: Sex- and Age-specific Conversion Factors Used to Determine Effective Dose from Dose-Length Product. Radiology 257:158–166CrossRefPubMed
26.
go back to reference Bamberg F, Dierks A, Nikolaou K et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429CrossRefPubMed Bamberg F, Dierks A, Nikolaou K et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429CrossRefPubMed
27.
go back to reference Wang Y, Qian B, Li B et al (2013) Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol 82:e360–e366CrossRefPubMed Wang Y, Qian B, Li B et al (2013) Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol 82:e360–e366CrossRefPubMed
29.
go back to reference Ward RJ, Roberts CC, Bencardino JT, et al. (2016) American College of Radiology ACR Appropriateness Criteria: Osteoporosis and Bone Mineral Density. Rest Am Coll Radiol Ward RJ, Roberts CC, Bencardino JT, et al. (2016) American College of Radiology ACR Appropriateness Criteria: Osteoporosis and Bone Mineral Density. Rest Am Coll Radiol
30.
go back to reference Wichmann JL, Booz C, Wesarg S et al (2015) Quantitative dual-energy CT for phantomless evaluation of cancellous bone mineral density of the vertebral pedicle: correlation with pedicle screw pull-out strength. Eur Radiol 25:1714–1720CrossRefPubMed Wichmann JL, Booz C, Wesarg S et al (2015) Quantitative dual-energy CT for phantomless evaluation of cancellous bone mineral density of the vertebral pedicle: correlation with pedicle screw pull-out strength. Eur Radiol 25:1714–1720CrossRefPubMed
31.
go back to reference Johnson TR, Fink C, Schönberg SO, Reiser M (2011) Dual Energy CT in Clinical Practice, Medical Radiology. Springer-Verlag, BerlinCrossRef Johnson TR, Fink C, Schönberg SO, Reiser M (2011) Dual Energy CT in Clinical Practice, Medical Radiology. Springer-Verlag, BerlinCrossRef
Metadata
Title
Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study
Authors
Robbert W. van Hamersvelt
Arnold M. R. Schilham
Klaus Engelke
Annemarie M. den Harder
Bart de Keizer
Harald J. Verhaar
Tim Leiner
Pim A. de Jong
Martin J. Willemink
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 10/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-4801-4

Other articles of this Issue 10/2017

European Radiology 10/2017 Go to the issue