Skip to main content
Top
Published in: European Radiology 3/2017

Open Access 01-03-2017 | Neuro

Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease

Authors: Marije R. Benedictus, Annebet E. Leeuwis, Maja A.A. Binnewijzend, Joost P.A. Kuijer, Philip Scheltens, Frederik Barkhof, Wiesje M. van der Flier, Niels D. Prins

Published in: European Radiology | Issue 3/2017

Login to get access

Abstract

Objective

To determine whether lower cerebral blood flow (CBF) is associated with faster cognitive decline in patients with Alzheimer’s disease (AD).

Methods

We included 88 patients with dementia due to AD from the Amsterdam Dementia Cohort. Mean follow-up was 2 ± 1 years. Linear mixed models were used to determine associations of lower whole brain and regional pseudo-continuous arterial spin labelling measured CBF with rate of cognitive decline as measured with repeated mini-mental state examination (MMSE). Model 1 was adjusted for age, sex, and education. Model 2 was additionally adjusted for normalized gray matter volume, medial temporal lobe atrophy, white matter hyperintensities, microbleeds, and lacunes. Analyses were repeated after partial volume correction (PVC) of CBF. Statistical significance was set at p ≤ 0.05.

Results

Patients were 65 ± 7 years old, 44 (50 %) were women, and mean baseline MMSE was 22 ± 4. Annual decline (β[SE]) on the MMSE was estimated at -2.11 (0.25) points per year. Lower whole brain (β[SE]-0.50[0.25]; p ≤ 0.05) and parietal (β[SE]-0.59[0.25]; p < 0.05) CBF were associated with faster cognitive decline. PVC cortical CBF was not associated with cognitive decline.

Conclusions

Lower CBF, in particular in the posterior brain regions, may have value as a prognostic marker for rate of cognitive decline in AD.

Key points

• In AD, lower CBF is associated with more rapid cognitive decline.
• Decreasing CBF does not reach a plateau early in AD.
• PcASL-CFB has additive value to conventional structural MRI measures in AD.
Literature
1.
go back to reference Doody RS, Massman P, Dunn JK (2001) A method for estimating progression rates in Alzheimer disease. Arch Neurol 58:449–454PubMed Doody RS, Massman P, Dunn JK (2001) A method for estimating progression rates in Alzheimer disease. Arch Neurol 58:449–454PubMed
2.
go back to reference Lam B, Masellis M, Freedman M, Stuss DT, Black SE (2013) Clinical, imaging, and pathological heterogeneity of the Alzheimer's disease syndrome. Alzheimers Res Ther 5:1CrossRefPubMedPubMedCentral Lam B, Masellis M, Freedman M, Stuss DT, Black SE (2013) Clinical, imaging, and pathological heterogeneity of the Alzheimer's disease syndrome. Alzheimers Res Ther 5:1CrossRefPubMedPubMedCentral
3.
go back to reference Sona A, Ellis KA, Ames D (2013) Rapid cognitive decline in Alzheimer's disease: a literature review. Int Rev Psychiatry 25:650–658CrossRefPubMed Sona A, Ellis KA, Ames D (2013) Rapid cognitive decline in Alzheimer's disease: a literature review. Int Rev Psychiatry 25:650–658CrossRefPubMed
4.
go back to reference Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:280–292CrossRefPubMedPubMedCentral Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:280–292CrossRefPubMedPubMedCentral
6.
go back to reference Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216CrossRefPubMedPubMedCentral Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216CrossRefPubMedPubMedCentral
7.
go back to reference Alsop DC, Dai W, Grossman M, Detre JA (2010) Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer's disease. J Alzheimers Dis 20:871–880PubMedPubMedCentral Alsop DC, Dai W, Grossman M, Detre JA (2010) Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer's disease. J Alzheimers Dis 20:871–880PubMedPubMedCentral
8.
go back to reference Binnewijzend MA, Benedictus MR, Kuijer JP et al. (2015) Cerebral perfusion in the predementia stages of Alzheimer's disease. Eur Radiol 26(2):506–14. doi: 10.1007/s00330-015-3834-9 Binnewijzend MA, Benedictus MR, Kuijer JP et al. (2015) Cerebral perfusion in the predementia stages of Alzheimer's disease. Eur Radiol 26(2):506–14. doi: 10.​1007/​s00330-015-3834-9
9.
go back to reference Wolk DA, Detre JA (2012) Arterial spin labeling MRI: an emerging biomarker for Alzheimer's disease and other neurodegenerative conditions. Curr Opin Neurol 25:421–428CrossRefPubMedPubMedCentral Wolk DA, Detre JA (2012) Arterial spin labeling MRI: an emerging biomarker for Alzheimer's disease and other neurodegenerative conditions. Curr Opin Neurol 25:421–428CrossRefPubMedPubMedCentral
10.
go back to reference Chen Y, Wolk DA, Reddin JS et al (2011) Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 77:1977–1985CrossRefPubMedPubMedCentral Chen Y, Wolk DA, Reddin JS et al (2011) Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 77:1977–1985CrossRefPubMedPubMedCentral
11.
go back to reference Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2:148–156CrossRefPubMed Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2:148–156CrossRefPubMed
12.
go back to reference Musiek ES, Chen Y, Korczykowski M et al (2012) Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement 8:51–59CrossRefPubMed Musiek ES, Chen Y, Korczykowski M et al (2012) Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement 8:51–59CrossRefPubMed
13.
go back to reference Ingelsson M, Fukumoto H, Newell KL et al (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62:925–931CrossRefPubMed Ingelsson M, Fukumoto H, Newell KL et al (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62:925–931CrossRefPubMed
14.
15.
go back to reference Chao LL, Buckley ST, Kornak J et al (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24:19–27CrossRefPubMedPubMedCentral Chao LL, Buckley ST, Kornak J et al (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24:19–27CrossRefPubMedPubMedCentral
16.
go back to reference Hanyu H, Sato T, Hirao K, Kanetaka H, Iwamoto T, Koizumi K (2010) The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study. J Neurol Sci 290:96–101CrossRefPubMed Hanyu H, Sato T, Hirao K, Kanetaka H, Iwamoto T, Koizumi K (2010) The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study. J Neurol Sci 290:96–101CrossRefPubMed
17.
go back to reference Nagahama Y, Nabatame H, Okina T et al (2003) Cerebral correlates of the progression rate of the cognitive decline in probable Alzheimer's disease. Eur Neurol 50:1–9CrossRefPubMed Nagahama Y, Nabatame H, Okina T et al (2003) Cerebral correlates of the progression rate of the cognitive decline in probable Alzheimer's disease. Eur Neurol 50:1–9CrossRefPubMed
18.
go back to reference Xekardaki A, Rodriguez C, Montandon ML et al (2015) Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals. Radiology 274:490–499CrossRefPubMed Xekardaki A, Rodriguez C, Montandon ML et al (2015) Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals. Radiology 274:490–499CrossRefPubMed
19.
go back to reference van der Flier WM, Pijnenburg YA, Prins N et al (2014) Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis 41:313–327PubMed van der Flier WM, Pijnenburg YA, Prins N et al (2014) Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis 41:313–327PubMed
20.
go back to reference McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–944CrossRefPubMed McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–944CrossRefPubMed
21.
go back to reference McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263–269CrossRefPubMedPubMedCentral McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263–269CrossRefPubMedPubMedCentral
22.
go back to reference Verhage F (1964) Intelligence and Age: Study with Dutch People Aged 12–77 [In Dutch]; Van Gorcum, Assen Verhage F (1964) Intelligence and Age: Study with Dutch People Aged 12–77 [In Dutch]; Van Gorcum, Assen
23.
go back to reference Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA (1995) Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 242:557–560CrossRefPubMed Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA (1995) Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 242:557–560CrossRefPubMed
24.
go back to reference Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 149:351–356 Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 149:351–356
25.
go back to reference Alsop DC, Detre JA, Golay X et al. (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102-16. doi: 10.1002/mrm.25197 Alsop DC, Detre JA, Golay X et al. (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102-16. doi: 10.​1002/​mrm.​25197
26.
go back to reference Dai W, Garcia D, de BC, Alsop DC: Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497 Dai W, Garcia D, de BC, Alsop DC: Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497
27.
go back to reference Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396CrossRefPubMed Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396CrossRefPubMed
29.
go back to reference Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156CrossRefPubMed Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156CrossRefPubMed
30.
go back to reference Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefPubMed Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefPubMed
31.
go back to reference Binnewijzend MA, Kuijer JP, Benedictus MR et al (2013) Cerebral Blood Flow Measured with 3D Pseudocontinuous Arterial Spin-labeling MR Imaging in Alzheimer Disease and Mild Cognitive Impairment: A Marker for Disease Severity. Radiology 267:221–230CrossRefPubMed Binnewijzend MA, Kuijer JP, Benedictus MR et al (2013) Cerebral Blood Flow Measured with 3D Pseudocontinuous Arterial Spin-labeling MR Imaging in Alzheimer Disease and Mild Cognitive Impairment: A Marker for Disease Severity. Radiology 267:221–230CrossRefPubMed
32.
go back to reference Asllani I, Borogovac A, Brown TR (2008) Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med 60:1362–1371CrossRefPubMed Asllani I, Borogovac A, Brown TR (2008) Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med 60:1362–1371CrossRefPubMed
33.
go back to reference Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state" A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefPubMed Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state" A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefPubMed
34.
go back to reference de Waal H, Stam CJ, de Haan W et al (2013) Alzheimer's disease patients not carrying the apolipoprotein E epsilon4 allele show more severe slowing of oscillatory brain activity. Neurobiol Aging 34:2158–2163CrossRefPubMed de Waal H, Stam CJ, de Haan W et al (2013) Alzheimer's disease patients not carrying the apolipoprotein E epsilon4 allele show more severe slowing of oscillatory brain activity. Neurobiol Aging 34:2158–2163CrossRefPubMed
35.
go back to reference Sluimer JD, van der Flier WM, Karas GB et al (2008) Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients. Radiology 248:590–598CrossRefPubMed Sluimer JD, van der Flier WM, Karas GB et al (2008) Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients. Radiology 248:590–598CrossRefPubMed
36.
go back to reference Hutton B, Thomas B, Erlandsson K et al (2012) What approach to brain partial volume correction is best for PET/MRI? Nucl Inst Methods Phys Res A 702:29–33CrossRef Hutton B, Thomas B, Erlandsson K et al (2012) What approach to brain partial volume correction is best for PET/MRI? Nucl Inst Methods Phys Res A 702:29–33CrossRef
37.
go back to reference Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2009) Mild cognitive impairment and alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250:856–866CrossRefPubMedPubMedCentral Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2009) Mild cognitive impairment and alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250:856–866CrossRefPubMedPubMedCentral
38.
go back to reference Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRefPubMed Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRefPubMed
39.
go back to reference Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci 13:812–818CrossRefPubMedPubMedCentral Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci 13:812–818CrossRefPubMedPubMedCentral
42.
go back to reference Mattsson N, Tosun D, Insel PS et al (2014) Association of brain amyloid-beta with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment. Brain 137:1550–1561CrossRefPubMedPubMedCentral Mattsson N, Tosun D, Insel PS et al (2014) Association of brain amyloid-beta with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment. Brain 137:1550–1561CrossRefPubMedPubMedCentral
43.
Metadata
Title
Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease
Authors
Marije R. Benedictus
Annebet E. Leeuwis
Maja A.A. Binnewijzend
Joost P.A. Kuijer
Philip Scheltens
Frederik Barkhof
Wiesje M. van der Flier
Niels D. Prins
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 3/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4450-z

Other articles of this Issue 3/2017

European Radiology 3/2017 Go to the issue