Skip to main content
Top
Published in: European Radiology 5/2015

01-05-2015 | Neuro

Discriminating pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors by means of susceptibility-weighted imaging

Authors: Jui-Hsun Fu, Tzu-Chao Chuang, Hsiao-Wen Chung, Hing-Chiu Chang, Huey-Shyan Lin, Shu-Shong Hsu, Po-Chin Wang, Shuo-Hsiu Hsu, Huay-Ben Pan, Ping-Hong Lai

Published in: European Radiology | Issue 5/2015

Login to get access

Abstract

Objectives

To investigate the feasibility of using susceptibility-weighted imaging (SWI) to discriminate abscesses and necrotic tumours.

Methods

Twenty-one patients with pyogenic abscesses, 21 patients with rim-enhancing glioblastomas and 23 patients with rim-enhancing metastases underwent SWI. Intralesional susceptibility signal (ILSS) was analyzed employing both qualitative (QL) and semi-quantitative (SQ) methods. Logistic regression models and receiver operating characteristic analysis were used to demonstrate the discriminating power.

Results

In QL analysis, ILSSs were seen in 12 of 21 abscesses, in 20 of 21 glioblastomas, and in 16 of 23 metastases. In SQ analysis, a low degree of ILSS (85.8 %) was in the majority of abscesses and a high degree of ILSS (76.2 %) was in the majority of glioblastomas. SQ model was significantly better than QL model in distinguishing abscesses from glioblastomas (P < .001). A derived ILSS cutoff grade of 1 or less was quantified as having a sensitivity of 85.7 %, specificity of 90.5 %, accuracy of 88.1 %, PPV of 90.0 %, and NPV of 86.4 % in distinguishing abscesses from glioblastomas.

Conclusions

A high-grade ILSS may help distinguish glioblastomas from abscesses and necrotic metastatic brain tumours. The lack of ILSS or low-grade ILSS can be a more specific sign in the imaging diagnosis of abscesses.

Key Points

• ILSS of SWI can contribute to differential diagnosis of rim-enhanced mass.
• Low-grade ILSS can be a more specific sign in abscesses.
• High-grade ILSS may help distinguish necrotic glioblastomas from abscesses.
• ILSS spreads across the four ILSS categories in metastases.
Literature
1.
go back to reference Lau DW, Klein NC, Cunha BA (1989) Brain abscess mimicking brain tumor. Heart Lung 18:634–637PubMed Lau DW, Klein NC, Cunha BA (1989) Brain abscess mimicking brain tumor. Heart Lung 18:634–637PubMed
2.
go back to reference Mamelak AN, Mampalam TJ, Obana WG, Rosenblum ML (1995) Improved management of multiple brain abscesses: a combined surgical and medical approach. Neurosurgery 36:76–85, discussion 85–76CrossRefPubMed Mamelak AN, Mampalam TJ, Obana WG, Rosenblum ML (1995) Improved management of multiple brain abscesses: a combined surgical and medical approach. Neurosurgery 36:76–85, discussion 85–76CrossRefPubMed
3.
go back to reference Toh CH, Wei KC, Ng SH, Wan YL, Lin CP, Castillo M (2011) Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol 32:1646–1651CrossRefPubMed Toh CH, Wei KC, Ng SH, Wan YL, Lin CP, Castillo M (2011) Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol 32:1646–1651CrossRefPubMed
4.
go back to reference Reiche W, Schuchardt V, Hagen T, Il'yasov KA, Billmann P, Weber J (2010) Differential diagnosis of intracranial ring enhancing cystic mass lesions–role of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI). Clin Neurol Neurosurg 112:218–225CrossRefPubMed Reiche W, Schuchardt V, Hagen T, Il'yasov KA, Billmann P, Weber J (2010) Differential diagnosis of intracranial ring enhancing cystic mass lesions–role of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI). Clin Neurol Neurosurg 112:218–225CrossRefPubMed
5.
go back to reference Nath K, Agarwal M, Ramola M et al (2009) Role of diffusion tensor imaging metrics and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of cystic intracranial mass lesions. Magn Reson Imaging 27:198–206CrossRefPubMed Nath K, Agarwal M, Ramola M et al (2009) Role of diffusion tensor imaging metrics and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of cystic intracranial mass lesions. Magn Reson Imaging 27:198–206CrossRefPubMed
6.
go back to reference Chiang IC, Hsieh TJ, Chiu ML, Liu GC, Kuo YT, Lin WC (2009) Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion and perfusion imaging. Br J Radiol 82:813–820CrossRefPubMed Chiang IC, Hsieh TJ, Chiu ML, Liu GC, Kuo YT, Lin WC (2009) Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion and perfusion imaging. Br J Radiol 82:813–820CrossRefPubMed
7.
go back to reference Muccio CF, Esposito G, Bartolini A, Cerase A (2008) Cerebral abscesses and necrotic cerebral tumours: differential diagnosis by perfusion-weighted magnetic resonance imaging. Radiol Med (Torino) 113:747–757CrossRef Muccio CF, Esposito G, Bartolini A, Cerase A (2008) Cerebral abscesses and necrotic cerebral tumours: differential diagnosis by perfusion-weighted magnetic resonance imaging. Radiol Med (Torino) 113:747–757CrossRef
8.
go back to reference Lai PH, Weng HH, Chen CY et al (2008) In vivo differentiation of aerobic brain abscesses and necrotic glioblastomas multiforme using proton MR spectroscopic imaging. AJNR Am J Neuroradiol 29:1511–1518CrossRefPubMed Lai PH, Weng HH, Chen CY et al (2008) In vivo differentiation of aerobic brain abscesses and necrotic glioblastomas multiforme using proton MR spectroscopic imaging. AJNR Am J Neuroradiol 29:1511–1518CrossRefPubMed
9.
go back to reference Lai PH, Hsu SS, Ding SW et al (2007) Proton magnetic resonance spectroscopy and diffusion-weighted imaging in intracranial cystic mass lesions. Surg Neurol 68:S25–S36CrossRefPubMed Lai PH, Hsu SS, Ding SW et al (2007) Proton magnetic resonance spectroscopy and diffusion-weighted imaging in intracranial cystic mass lesions. Surg Neurol 68:S25–S36CrossRefPubMed
10.
go back to reference Chang SC, Lai PH, Chen WL et al (2002) Diffusion-weighted MRI features of brain abscess and cystic or necrotic brain tumors: comparison with conventional MRI. Clin Imaging 26:227–236CrossRefPubMed Chang SC, Lai PH, Chen WL et al (2002) Diffusion-weighted MRI features of brain abscess and cystic or necrotic brain tumors: comparison with conventional MRI. Clin Imaging 26:227–236CrossRefPubMed
11.
go back to reference Lai PH, Ho JT, Chen WL et al (2002) Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 23:1369–1377PubMed Lai PH, Ho JT, Chen WL et al (2002) Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 23:1369–1377PubMed
12.
go back to reference Mishra AM, Gupta RK, Jaggi RS et al (2004) Role of diffusion-weighted imaging and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of ring-enhancing intracranial cystic mass lesions. J Comput Assist Tomogr 28:540–547CrossRefPubMed Mishra AM, Gupta RK, Jaggi RS et al (2004) Role of diffusion-weighted imaging and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of ring-enhancing intracranial cystic mass lesions. J Comput Assist Tomogr 28:540–547CrossRefPubMed
13.
go back to reference Erdogan C, Hakyemez B, Yildirim N, Parlak M (2005) Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J Comput Assist Tomogr 29:663–667CrossRefPubMed Erdogan C, Hakyemez B, Yildirim N, Parlak M (2005) Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J Comput Assist Tomogr 29:663–667CrossRefPubMed
14.
go back to reference Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277CrossRefPubMed Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277CrossRefPubMed
15.
go back to reference Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14:453–467CrossRefPubMed Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14:453–467CrossRefPubMed
16.
go back to reference Kim HS, Jahng GH, Ryu CW, Kim SY (2009) Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am J Neuroradiol 30:1574–1579CrossRefPubMed Kim HS, Jahng GH, Ryu CW, Kim SY (2009) Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am J Neuroradiol 30:1574–1579CrossRefPubMed
17.
go back to reference Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30CrossRefPubMedCentralPubMed Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30CrossRefPubMedCentralPubMed
18.
go back to reference Park MJ, Kim HS, Jahng GH, Ryu CW, Park SM, Kim SY (2009) Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 30:1402–1408CrossRefPubMed Park MJ, Kim HS, Jahng GH, Ryu CW, Park SM, Kim SY (2009) Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 30:1402–1408CrossRefPubMed
19.
go back to reference Park SM, Kim HS, Jahng GH, Ryu CW, Kim SY (2010) Combination of high-resolution susceptibility-weighted imaging and the apparent diffusion coefficient: added value to brain tumour imaging and clinical feasibility of non-contrast MRI at 3 T. Br J Radiol 83:466–475CrossRefPubMedCentralPubMed Park SM, Kim HS, Jahng GH, Ryu CW, Kim SY (2010) Combination of high-resolution susceptibility-weighted imaging and the apparent diffusion coefficient: added value to brain tumour imaging and clinical feasibility of non-contrast MRI at 3 T. Br J Radiol 83:466–475CrossRefPubMedCentralPubMed
20.
go back to reference Lai PH, Chang HC, Chuang TC et al (2012) Susceptibility-weighted imaging in patients with pyogenic brain abscesses at 1.5 T: characteristics of the abscess capsule. AJNR Am J Neuroradiol 33:910–914CrossRefPubMed Lai PH, Chang HC, Chuang TC et al (2012) Susceptibility-weighted imaging in patients with pyogenic brain abscesses at 1.5 T: characteristics of the abscess capsule. AJNR Am J Neuroradiol 33:910–914CrossRefPubMed
21.
go back to reference Toh CH, Wei KC, Chang CN et al (2012) Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. AJNR Am J Neuroradiol 33:1534–1538CrossRefPubMed Toh CH, Wei KC, Chang CN et al (2012) Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. AJNR Am J Neuroradiol 33:1534–1538CrossRefPubMed
22.
go back to reference Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232–252CrossRefPubMedCentralPubMed Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232–252CrossRefPubMedCentralPubMed
23.
go back to reference Wang Y, Yu Y, Li D et al (2000) Artery and vein separation using susceptibility-dependent phase in contrast-enhanced MRA. J Magn Reson Imaging 12:661–670CrossRefPubMed Wang Y, Yu Y, Li D et al (2000) Artery and vein separation using susceptibility-dependent phase in contrast-enhanced MRA. J Magn Reson Imaging 12:661–670CrossRefPubMed
24.
go back to reference Reichenbach JR, Venkatesan R, Yablonskiy DA, Thompson MR, Lai S, Haacke EM (1997) Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imaging 7:266–279CrossRefPubMed Reichenbach JR, Venkatesan R, Yablonskiy DA, Thompson MR, Lai S, Haacke EM (1997) Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imaging 7:266–279CrossRefPubMed
25.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed
26.
go back to reference Pinker K, Noebauer-Huhmann IM, Stavrou I et al (2007) High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3 T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol 28:1280–1286CrossRefPubMed Pinker K, Noebauer-Huhmann IM, Stavrou I et al (2007) High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3 T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol 28:1280–1286CrossRefPubMed
27.
go back to reference Li C, Ai B, Li Y, Qi H, Wu L (2010) Susceptibility-weighted imaging in grading brain astrocytomas. Eur J Radiol 75:e81–e85CrossRefPubMed Li C, Ai B, Li Y, Qi H, Wu L (2010) Susceptibility-weighted imaging in grading brain astrocytomas. Eur J Radiol 75:e81–e85CrossRefPubMed
28.
go back to reference Fahrendorf D, Schwindt W, Wolfer J et al (2013) Benefits of contrast-enhanced SWI in patients with glioblastoma multiforme. Eur Radiol 23:2868–2879CrossRefPubMed Fahrendorf D, Schwindt W, Wolfer J et al (2013) Benefits of contrast-enhanced SWI in patients with glioblastoma multiforme. Eur Radiol 23:2868–2879CrossRefPubMed
29.
go back to reference Ong BC, Stuckey SL (2010) Susceptibility weighted imaging: a pictorial review. J Med Imaging Radiat Oncol 54:435–449CrossRefPubMed Ong BC, Stuckey SL (2010) Susceptibility weighted imaging: a pictorial review. J Med Imaging Radiat Oncol 54:435–449CrossRefPubMed
30.
go back to reference Robinson RJ, Bhuta S (2011) Susceptibility-Weighted Imaging of the Brain: Current Utility and Potential Applications. J Neuroimaging 21:e189–e204CrossRefPubMed Robinson RJ, Bhuta S (2011) Susceptibility-Weighted Imaging of the Brain: Current Utility and Potential Applications. J Neuroimaging 21:e189–e204CrossRefPubMed
31.
go back to reference Gupta RK, Tomar V, Awasthi R et al (2012) T2*-weighted MR angiography substantially increases the detection of hemorrhage in the wall of brain abscess: implications in clinical interpretation. Neuroradiology 54:565–572CrossRefPubMed Gupta RK, Tomar V, Awasthi R et al (2012) T2*-weighted MR angiography substantially increases the detection of hemorrhage in the wall of brain abscess: implications in clinical interpretation. Neuroradiology 54:565–572CrossRefPubMed
32.
go back to reference Chang HC, Chuang TC, Chung HW et al (2012) Multilayer appearance on contrast-enhanced susceptibility-weighted images on patients with brain abscesses: Possible origins and effects of postprocessing. J Magn Reson Imaging 36:1353–1361CrossRefPubMed Chang HC, Chuang TC, Chung HW et al (2012) Multilayer appearance on contrast-enhanced susceptibility-weighted images on patients with brain abscesses: Possible origins and effects of postprocessing. J Magn Reson Imaging 36:1353–1361CrossRefPubMed
33.
go back to reference Britt RH, Enzmann DR, Yeager AS (1981) Neuropathological and computerized tomographic findings in experimental brain abscess. J Neurosurg 55:590–603CrossRefPubMed Britt RH, Enzmann DR, Yeager AS (1981) Neuropathological and computerized tomographic findings in experimental brain abscess. J Neurosurg 55:590–603CrossRefPubMed
34.
go back to reference Ferreira NP, Otta GM, do Amaral LL, da Rocha AJ (2005) Imaging aspects of pyogenic infections of the central nervous system. Top Magn Reson Imaging 16:145–154CrossRefPubMed Ferreira NP, Otta GM, do Amaral LL, da Rocha AJ (2005) Imaging aspects of pyogenic infections of the central nervous system. Top Magn Reson Imaging 16:145–154CrossRefPubMed
35.
go back to reference Sehgal V, Delproposto Z, Haddar D et al (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24:41–51CrossRefPubMed Sehgal V, Delproposto Z, Haddar D et al (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24:41–51CrossRefPubMed
Metadata
Title
Discriminating pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors by means of susceptibility-weighted imaging
Authors
Jui-Hsun Fu
Tzu-Chao Chuang
Hsiao-Wen Chung
Hing-Chiu Chang
Huey-Shyan Lin
Shu-Shong Hsu
Po-Chin Wang
Shuo-Hsiu Hsu
Huay-Ben Pan
Ping-Hong Lai
Publication date
01-05-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-014-3518-x

Other articles of this Issue 5/2015

European Radiology 5/2015 Go to the issue