Skip to main content
Top
Published in: European Radiology 9/2013

01-09-2013 | Breast

Shear-wave elastography in the diagnosis of solid breast masses: what leads to false-negative or false-positive results?

Authors: Jung Hyun Yoon, Hae Kyoung Jung, Jong Tae Lee, Kyung Hee Ko

Published in: European Radiology | Issue 9/2013

Login to get access

Abstract

Objective

To investigate the factors that have an effect on false-positive or false-negative shear-wave elastography (SWE) results in solid breast masses.

Methods

From June to December 2012, 222 breast lesions of 199 consecutive women (mean age: 45.3 ± 10.1 years; range, 21 to 88 years) who had been scheduled for biopsy or surgical excision were included. Greyscale ultrasound and SWE were performed in all women before biopsy. Final ultrasound assessments and SWE parameters (pattern classification and maximum elasticity) were recorded and compared with histopathology results. Patient and lesion factors in the ‘true’ and ‘false’ groups were compared.

Results

Of the 222 masses, 175 (78.8 %) were benign, and 47 (21.2 %) were malignant. False-positive rates of benign masses were significantly higher than false-negative rates of malignancy in SWE patterns, 36.6 % to 6.4 % (P < 0.001). Among both benign and malignant masses, factors showing significance among false SWE features were lesion size, breast thickness and lesion depth (all P < 0.05). All 47 malignant breast masses had SWE images of good quality.

Conclusions

False SWE features were more significantly seen in benign masses. Lesion size, breast thickness and lesion depth have significance in producing false results, and this needs consideration in SWE image acquisition.

Key Points

Shear-wave elastography (SWE) is widely used during breast imaging
At SWE, false-positive rates were significantly higher than false-negative rates
Larger size, breast thickness, depth and fair quality influences false-positive SWE features
Smaller size, larger breast thickness and depth influences false-negative SWE features
Literature
1.
go back to reference Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350PubMedCrossRef Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350PubMedCrossRef
2.
go back to reference Burnside ES, Hall TJ, Sommer AM et al (2007) Differentiating benign from malignant solid breast masses with US strain imaging. Radiology 245:401–410PubMedCrossRef Burnside ES, Hall TJ, Sommer AM et al (2007) Differentiating benign from malignant solid breast masses with US strain imaging. Radiology 245:401–410PubMedCrossRef
3.
go back to reference Zhu QL, Jiang YX, Liu JB et al (2008) Real-time ultrasound elastography: its potential role in assessment of breast lesions. Ultrasound Med Biol 34:1232–1238PubMedCrossRef Zhu QL, Jiang YX, Liu JB et al (2008) Real-time ultrasound elastography: its potential role in assessment of breast lesions. Ultrasound Med Biol 34:1232–1238PubMedCrossRef
4.
go back to reference Raza S, Odulate A, Ong EM, Chikarmane S, Harston CW (2010) Using real-time tissue elastography for breast lesion evaluation: our initial experience. J Ultrasound Med 29:551–563PubMed Raza S, Odulate A, Ong EM, Chikarmane S, Harston CW (2010) Using real-time tissue elastography for breast lesion evaluation: our initial experience. J Ultrasound Med 29:551–563PubMed
5.
go back to reference Yoon JH, Kim MH, Kim EK, Moon HJ, Kwak JY, Kim MJ (2011) Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. AJR Am J Roentgenol 196:730–736PubMedCrossRef Yoon JH, Kim MH, Kim EK, Moon HJ, Kwak JY, Kim MJ (2011) Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. AJR Am J Roentgenol 196:730–736PubMedCrossRef
6.
go back to reference Chang JM, Moon WK, Cho N et al (2011) Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Res Treat 129:89–97PubMedCrossRef Chang JM, Moon WK, Cho N et al (2011) Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Res Treat 129:89–97PubMedCrossRef
7.
go back to reference Athanasiou A, Tardivon A, Tanter M et al (2010) Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology 256:297–303PubMedCrossRef Athanasiou A, Tardivon A, Tanter M et al (2010) Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology 256:297–303PubMedCrossRef
8.
go back to reference Cosgrove DO, Berg WA, Dore CJ et al (2012) Shear wave elastography for breast masses is highly reproducible. Eur Radiol 22:1023–1032PubMedCrossRef Cosgrove DO, Berg WA, Dore CJ et al (2012) Shear wave elastography for breast masses is highly reproducible. Eur Radiol 22:1023–1032PubMedCrossRef
9.
go back to reference Tanter M, Bercoff J, Athanasiou A et al (2008) Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol 34:1373–1386PubMedCrossRef Tanter M, Bercoff J, Athanasiou A et al (2008) Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol 34:1373–1386PubMedCrossRef
10.
go back to reference Gweon HM, Youk JH, Son EJ, Kim JA (2013) Visually assessed colour overlay features in shear-wave elastography for breast masses: quantification and diagnostic performance. Eur Radiol 23:658–653 Gweon HM, Youk JH, Son EJ, Kim JA (2013) Visually assessed colour overlay features in shear-wave elastography for breast masses: quantification and diagnostic performance. Eur Radiol 23:658–653
11.
go back to reference Chang JM, Moon WK, Cho N, Kim SJ (2011) Breast mass evaluation: factors influencing the quality of US elastography. Radiology 259:59–64PubMedCrossRef Chang JM, Moon WK, Cho N, Kim SJ (2011) Breast mass evaluation: factors influencing the quality of US elastography. Radiology 259:59–64PubMedCrossRef
12.
go back to reference Yoon JH, Kim MJ, Kim EK, Moon HJ, Choi JS (2012) Discordant Elastography Images of Breast Lesions: How Various Factors Lead to Discordant Findings. Ultraschall Med 33:E145–150 Yoon JH, Kim MJ, Kim EK, Moon HJ, Choi JS (2012) Discordant Elastography Images of Breast Lesions: How Various Factors Lead to Discordant Findings. Ultraschall Med 33:E145–150
13.
go back to reference Radiology ACo (2003) Breast imaging reporting and data system. American College of Radiology, Reston Radiology ACo (2003) Breast imaging reporting and data system. American College of Radiology, Reston
14.
go back to reference Berg WA, Cosgrove DO, Dore CJ et al (2012) Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 262:435–449PubMedCrossRef Berg WA, Cosgrove DO, Dore CJ et al (2012) Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 262:435–449PubMedCrossRef
15.
go back to reference Tozaki M, Fukuma E (2011) Pattern classification of ShearWave Elastography images for differential diagnosis between benign and malignant solid breast masses. Acta Radiol 52:1069–1075PubMedCrossRef Tozaki M, Fukuma E (2011) Pattern classification of ShearWave Elastography images for differential diagnosis between benign and malignant solid breast masses. Acta Radiol 52:1069–1075PubMedCrossRef
16.
go back to reference Scaperrotta G, Ferranti C, Costa C et al (2008) Role of sonoelastography in non-palpable breast lesions. Eur Radiol 18:2381–2389PubMedCrossRef Scaperrotta G, Ferranti C, Costa C et al (2008) Role of sonoelastography in non-palpable breast lesions. Eur Radiol 18:2381–2389PubMedCrossRef
17.
go back to reference Evans A, Whelehan P, Thomson K et al (2012) Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br J Cancer 107:224–229PubMedCrossRef Evans A, Whelehan P, Thomson K et al (2012) Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br J Cancer 107:224–229PubMedCrossRef
18.
go back to reference Sadigh G, Carlos RC, Neal CH, Wojcinski S, Dwamena BA (2013) Impact of breast mass size on accuracy of ultrasound elastography vs. conventional B-mode ultrasound: a meta-analysis of individual participants. Eur Radiol 23:1006–1014 Sadigh G, Carlos RC, Neal CH, Wojcinski S, Dwamena BA (2013) Impact of breast mass size on accuracy of ultrasound elastography vs. conventional B-mode ultrasound: a meta-analysis of individual participants. Eur Radiol 23:1006–1014
19.
go back to reference Ciurea AI, Bolboaca SD, Ciortea CA, Botar-Jid C, Dudea SM (2011) The influence of technical factors on sonoelastographic assessment of solid breast nodules. Ultraschall Med 32:27–34CrossRef Ciurea AI, Bolboaca SD, Ciortea CA, Botar-Jid C, Dudea SM (2011) The influence of technical factors on sonoelastographic assessment of solid breast nodules. Ultraschall Med 32:27–34CrossRef
20.
go back to reference Evans A, Whelehan P, Thomson K et al (2010) Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res 12:R104PubMedCrossRef Evans A, Whelehan P, Thomson K et al (2010) Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res 12:R104PubMedCrossRef
21.
go back to reference Lee SH, Chang JM, Kim WH et al (2013) Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography. Eur Radiol 23:1015–1026 Lee SH, Chang JM, Kim WH et al (2013) Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography. Eur Radiol 23:1015–1026
22.
go back to reference Youk JH, Kim EK, Kim MJ, Kwak JY, Son EJ (2010) Analysis of false-negative results after US-guided 14-gauge core needle breast biopsy. Eur Radiol 20:782–789PubMedCrossRef Youk JH, Kim EK, Kim MJ, Kwak JY, Son EJ (2010) Analysis of false-negative results after US-guided 14-gauge core needle breast biopsy. Eur Radiol 20:782–789PubMedCrossRef
23.
go back to reference Youk JH, Kim EK, Kim MJ, Oh KK (2008) Sonographically guided 14-gauge core needle biopsy of breast masses: a review of 2,420 cases with long-term follow-up. AJR Am J Roentgenol 190:202–207PubMedCrossRef Youk JH, Kim EK, Kim MJ, Oh KK (2008) Sonographically guided 14-gauge core needle biopsy of breast masses: a review of 2,420 cases with long-term follow-up. AJR Am J Roentgenol 190:202–207PubMedCrossRef
24.
go back to reference Cho N, Moon WK, Park JS (2009) Real-time US elastography in the differentiation of suspicious microcalcifications on mammography. Eur Radiol 19:1621–1628PubMedCrossRef Cho N, Moon WK, Park JS (2009) Real-time US elastography in the differentiation of suspicious microcalcifications on mammography. Eur Radiol 19:1621–1628PubMedCrossRef
Metadata
Title
Shear-wave elastography in the diagnosis of solid breast masses: what leads to false-negative or false-positive results?
Authors
Jung Hyun Yoon
Hae Kyoung Jung
Jong Tae Lee
Kyung Hee Ko
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2013
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-013-2854-6

Other articles of this Issue 9/2013

European Radiology 9/2013 Go to the issue