Skip to main content
Top
Published in: European Radiology 8/2013

01-08-2013 | Computed Tomography

Frequency split metal artefact reduction in pelvic computed tomography

Authors: M. M. Lell, E. Meyer, M. Schmid, R. Raupach, M. S. May, M. Uder, M. Kachelriess

Published in: European Radiology | Issue 8/2013

Login to get access

Abstract

Objectives

Artefacts from total hip replacement affect image quality and the visualisation of pelvic lesions on computed tomography (CT). We propose a frequency split (FS) approach in addition to the normalised metal artefact reduction (NMAR) algorithm that aims to suppress artefacts and improves image quality in patients with orthopaedic hardware.

Methods

Data from ten consecutive patients with metal artefacts from uni- (n = 5) and bilateral (n = 4) total hip replacement or osteosynthesis (n = 1) were reconstructed with filtered back projection (FBP), linear interpolation MAR (LIMAR), NMAR, FSLIMAR and FSNMAR and analysed for image quality and severity of artefacts.

Results

NMAR and FSNMAR significantly improved the assessment of the pelvic organs, lymph nodes and vessels compared with FBP, LIMAR or FSLIMAR (P < 0.05). Assessment of the metal hardware, joint and capsule was improved with the addition of FS (FSLIMAR, FSNMAR). No algorithm-related artefacts were detected in regions that did not contain metal.

Conclusions

NMAR, FSLIMAR and FSNMAR have the potential to improve image quality in patients with artefacts from metal hardware and to improve the diagnostic accuracy of CT of the organs of the pelvis. Although introducing some algorithm-related artefacts, FSNMAR most accurately displayed adjacent bone and tissue next to metal implants.

Key Points

Orthopaedic metallic hardware often creates serious artefacts in computed tomography, hindering diagnosis.
The normalised metal artefact reduction (NMAR) algorithm was developed to suppress such artefacts.
NMAR improves CT assessment of pelvic organs in patients with orthopaedic hardware.
Addition of the frequency split technique (FSNMAR) helps assess tissue near metal hardware.
NMAR and FSNMAR are robust and computationally effective sinogram interpolation algorithms.
Literature
1.
go back to reference Greess H, Wolf H, Baum U et al (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10:391–394PubMedCrossRef Greess H, Wolf H, Baum U et al (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10:391–394PubMedCrossRef
2.
go back to reference Kachelriess M, Watzke O, Kalender WA (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28:475–490PubMedCrossRef Kachelriess M, Watzke O, Kalender WA (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28:475–490PubMedCrossRef
3.
go back to reference Kalender WA, Buchenau S, Deak P et al (2008) Technical approaches to the optimisation of CT. Phys Med 24:71–79PubMedCrossRef Kalender WA, Buchenau S, Deak P et al (2008) Technical approaches to the optimisation of CT. Phys Med 24:71–79PubMedCrossRef
4.
go back to reference Glover GH, Pelc NJ (1981) An algorithm for the reduction of metal clip artifacts in CT reconstructions. Med Phys 8:799–807PubMedCrossRef Glover GH, Pelc NJ (1981) An algorithm for the reduction of metal clip artifacts in CT reconstructions. Med Phys 8:799–807PubMedCrossRef
5.
go back to reference Kalender WA, Hebel R, Ebersberger J (1987) Reduction of CT artifacts caused by metallic implants. Radiology 164:576–577PubMed Kalender WA, Hebel R, Ebersberger J (1987) Reduction of CT artifacts caused by metallic implants. Radiology 164:576–577PubMed
6.
go back to reference Mahnken AH, Raupach R, Wildberger JE et al (2003) A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Invest Radiol 38:769–775PubMedCrossRef Mahnken AH, Raupach R, Wildberger JE et al (2003) A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Invest Radiol 38:769–775PubMedCrossRef
7.
go back to reference Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J (2010) Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys 37:620–628PubMedCrossRef Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J (2010) Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys 37:620–628PubMedCrossRef
8.
go back to reference Yu L, Li H, Mueller J et al (2009) Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: techniques and initial clinical results. Invest Radiol 44:691–696PubMedCrossRef Yu L, Li H, Mueller J et al (2009) Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: techniques and initial clinical results. Invest Radiol 44:691–696PubMedCrossRef
9.
go back to reference Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M (2010) Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys 37:5482–5493PubMedCrossRef Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M (2010) Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys 37:5482–5493PubMedCrossRef
10.
go back to reference Lell MM, Meyer E, Kuefner MA et al (2012) Normalized metal artifact reduction in head and neck computed tomography. Invest Radiol 47:415–421PubMedCrossRef Lell MM, Meyer E, Kuefner MA et al (2012) Normalized metal artifact reduction in head and neck computed tomography. Invest Radiol 47:415–421PubMedCrossRef
11.
go back to reference Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M (2012) Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys 39:1904–1916PubMedCrossRef Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M (2012) Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys 39:1904–1916PubMedCrossRef
12.
go back to reference Abdoli M, Ay MR, Ahmadian A, Dierckx RA, Zaidi H (2010) Reduction of dental filling metallic artifacts in CT-based attenuation correction of PET data using weighted virtual sinograms optimized by a genetic algorithm. Med Phys 37:6166–6177PubMedCrossRef Abdoli M, Ay MR, Ahmadian A, Dierckx RA, Zaidi H (2010) Reduction of dental filling metallic artifacts in CT-based attenuation correction of PET data using weighted virtual sinograms optimized by a genetic algorithm. Med Phys 37:6166–6177PubMedCrossRef
13.
go back to reference Kennedy JA, Israel O, Frenkel A, Bar-Shalom R, Azhari H (2007) The reduction of artifacts due to metal hip implants in CT-attenuation corrected PET images from hybrid PET/CT scanners. Med Biol Eng Comput 45:553–562PubMedCrossRef Kennedy JA, Israel O, Frenkel A, Bar-Shalom R, Azhari H (2007) The reduction of artifacts due to metal hip implants in CT-attenuation corrected PET images from hybrid PET/CT scanners. Med Biol Eng Comput 45:553–562PubMedCrossRef
14.
go back to reference Lee MJ, Kim S, Lee SA et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27:791–803PubMedCrossRef Lee MJ, Kim S, Lee SA et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27:791–803PubMedCrossRef
15.
go back to reference Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429PubMedCrossRef Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429PubMedCrossRef
16.
go back to reference Zhou C, Zhao YE, Luo S et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18:1252–1257PubMedCrossRef Zhou C, Zhao YE, Luo S et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18:1252–1257PubMedCrossRef
17.
go back to reference Lee YH, Park KK, Song HT, Kim S, Suh JS (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22:1331–1340PubMedCrossRef Lee YH, Park KK, Song HT, Kim S, Suh JS (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22:1331–1340PubMedCrossRef
18.
go back to reference Prell D, Kyriakou Y, Kachelriess M, Kalender WA (2010) Reducing metal artifacts in computed tomography caused by hip endoprostheses using a physics-based approach. Invest Radiol 45:747–754PubMedCrossRef Prell D, Kyriakou Y, Kachelriess M, Kalender WA (2010) Reducing metal artifacts in computed tomography caused by hip endoprostheses using a physics-based approach. Invest Radiol 45:747–754PubMedCrossRef
19.
go back to reference De Man B, Nuyts J, Dupont P, Marchal G, Suetens P (2001) An iterative maximum-likelihood polychromatic algorithm for CT. IEEE Trans Med Imaging 20:999–1008PubMedCrossRef De Man B, Nuyts J, Dupont P, Marchal G, Suetens P (2001) An iterative maximum-likelihood polychromatic algorithm for CT. IEEE Trans Med Imaging 20:999–1008PubMedCrossRef
20.
go back to reference Lemmens C, Faul D, Nuyts J (2009) Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion. IEEE Trans Med Imaging 28:250–260PubMedCrossRef Lemmens C, Faul D, Nuyts J (2009) Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion. IEEE Trans Med Imaging 28:250–260PubMedCrossRef
21.
go back to reference Wang G, Frei T, Vannier MW (2000) Fast iterative algorithm for metal artifact reduction in X-ray CT. Acad Radiol 7:607–614PubMedCrossRef Wang G, Frei T, Vannier MW (2000) Fast iterative algorithm for metal artifact reduction in X-ray CT. Acad Radiol 7:607–614PubMedCrossRef
22.
go back to reference Wang G, Snyder DL, O’Sullivan JA, Vannier MW (1996) Iterative deblurring for CT metal artifact reduction. IEEE Trans Med Imaging 15:657–664PubMedCrossRef Wang G, Snyder DL, O’Sullivan JA, Vannier MW (1996) Iterative deblurring for CT metal artifact reduction. IEEE Trans Med Imaging 15:657–664PubMedCrossRef
23.
go back to reference Wang G, Vannier MW, Cheng PC (1999) Iterative X-ray cone-beam tomography for metal artifact reduction and local region reconstruction. Microsc Microanal 5:58–65PubMedCrossRef Wang G, Vannier MW, Cheng PC (1999) Iterative X-ray cone-beam tomography for metal artifact reduction and local region reconstruction. Microsc Microanal 5:58–65PubMedCrossRef
24.
go back to reference Zhang X, Wang J, Xing L (2011) Metal artifact reduction in X-ray computed tomography (CT) by constrained optimization. Med Phys 38:701–711PubMedCrossRef Zhang X, Wang J, Xing L (2011) Metal artifact reduction in X-ray computed tomography (CT) by constrained optimization. Med Phys 38:701–711PubMedCrossRef
25.
go back to reference Aootaphao S, Pintavirooj C, Sotthivirat S (2008) Penalized-likelihood reconstruction for metal artifact reduction in cone-beam CT. Conf Proc IEEE Eng Med Biol Soc 2008:2733–2736PubMed Aootaphao S, Pintavirooj C, Sotthivirat S (2008) Penalized-likelihood reconstruction for metal artifact reduction in cone-beam CT. Conf Proc IEEE Eng Med Biol Soc 2008:2733–2736PubMed
26.
go back to reference Buzug T, Oehler M (2007) Statistical image reconstruction for inconsistent CT projection data. Methods Inf Med 46:261–269PubMed Buzug T, Oehler M (2007) Statistical image reconstruction for inconsistent CT projection data. Methods Inf Med 46:261–269PubMed
27.
go back to reference Naranjo V, Llorens R, Alcaniz M, Lopez-Mir F (2011) Metal artifact reduction in dental CT images using polar mathematical morphology. Comput Methods Programs Biomed 102:64–74PubMedCrossRef Naranjo V, Llorens R, Alcaniz M, Lopez-Mir F (2011) Metal artifact reduction in dental CT images using polar mathematical morphology. Comput Methods Programs Biomed 102:64–74PubMedCrossRef
28.
go back to reference Rinkel J, Dillon WP, Funk T, Gould R, Prevrhal S (2008) Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods. J Comput Assist Tomogr 32:621–629PubMedCrossRef Rinkel J, Dillon WP, Funk T, Gould R, Prevrhal S (2008) Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods. J Comput Assist Tomogr 32:621–629PubMedCrossRef
29.
go back to reference Watzke O, Kalender WA (2004) A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol 14:849–856PubMedCrossRef Watzke O, Kalender WA (2004) A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol 14:849–856PubMedCrossRef
30.
go back to reference Liu PT, Pavlicek WP, Peter MB, Spangehl MJ, Roberts CC, Paden RG (2009) Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress. Skeletal Radiol 38:797–802PubMedCrossRef Liu PT, Pavlicek WP, Peter MB, Spangehl MJ, Roberts CC, Paden RG (2009) Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress. Skeletal Radiol 38:797–802PubMedCrossRef
Metadata
Title
Frequency split metal artefact reduction in pelvic computed tomography
Authors
M. M. Lell
E. Meyer
M. Schmid
R. Raupach
M. S. May
M. Uder
M. Kachelriess
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 8/2013
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-013-2809-y

Other articles of this Issue 8/2013

European Radiology 8/2013 Go to the issue