Skip to main content
Top
Published in: European Radiology 12/2010

01-12-2010 | Cardiac

Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study

Authors: Florian von Knobelsdorff-Brenkenhoff, Tobias Frauenrath, Marcel Prothmann, Matthias A. Dieringer, Fabian Hezel, Wolfgang Renz, Kerstin Kretschel, Thoralf Niendorf, Jeanette Schulz-Menger

Published in: European Radiology | Issue 12/2010

Login to get access

Abstract

Objectives

Interest in cardiovascular magnetic resonance (CMR) at 7 T is motivated by the expected increase in spatial and temporal resolution, but the method is technically challenging. We examined the feasibility of cardiac chamber quantification at 7 T.

Methods

A stack of short axes covering the left ventricle was obtained in nine healthy male volunteers. At 1.5 T, steady-state free precession (SSFP) and fast gradient echo (FGRE) cine imaging with 7 mm slice thickness (STH) were used. At 7 T, FGRE with 7 mm and 4 mm STH were applied. End-diastolic volume, end-systolic volume, ejection fraction and mass were calculated.

Results

All 7 T examinations provided excellent blood/myocardium contrast for all slice directions. No significant difference was found regarding ejection fraction and cardiac volumes between SSFP at 1.5 T and FGRE at 7 T, while volumes obtained from FGRE at 1.5 T were underestimated. Cardiac mass derived from FGRE at 1.5 and 7 T was larger than obtained from SSFP at 1.5 T. Agreement of volumes and mass between SSFP at 1.5 T and FGRE improved for FGRE at 7 T when combined with an STH reduction to 4 mm.

Conclusions

This pilot study demonstrates that cardiac chamber quantification at 7 T using FGRE is feasible and agrees closely with SSFP at 1.5 T.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pettigrew RI (1989) Dynamic cardiac MR imaging techniques and applications. Radiol Clin North Am 27:1183–1203PubMed Pettigrew RI (1989) Dynamic cardiac MR imaging techniques and applications. Radiol Clin North Am 27:1183–1203PubMed
2.
go back to reference Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38:436–442CrossRefPubMed Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38:436–442CrossRefPubMed
3.
go back to reference Gutberlet M, Noeske R, Schwinge K, Freyhardt P, Felix R, Niendorf T (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41:154–167CrossRefPubMed Gutberlet M, Noeske R, Schwinge K, Freyhardt P, Felix R, Niendorf T (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41:154–167CrossRefPubMed
4.
go back to reference Ocali O, Atalar E (1998) Ultimate intrinsic signal-to-noise ratio in MRI. Magn Reson Med 39:462–473CrossRefPubMed Ocali O, Atalar E (1998) Ultimate intrinsic signal-to-noise ratio in MRI. Magn Reson Med 39:462–473CrossRefPubMed
5.
go back to reference Hecht EM, Lee RF, Taouli B, Sodickson DK (2007) Perspectives on body MR imaging at ultrahigh field. Magn Reson Imaging Clin N Am 15:449–465CrossRefPubMed Hecht EM, Lee RF, Taouli B, Sodickson DK (2007) Perspectives on body MR imaging at ultrahigh field. Magn Reson Imaging Clin N Am 15:449–465CrossRefPubMed
6.
go back to reference Mainero C, Benner T, Radding A, van der Kouwe A, Jensen R, Rosen BR, Kinkel RP (2009) In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 73:941–948CrossRefPubMed Mainero C, Benner T, Radding A, van der Kouwe A, Jensen R, Rosen BR, Kinkel RP (2009) In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 73:941–948CrossRefPubMed
7.
go back to reference Vaughan JT, Snyder CJ, DelaBarre LJ, Bolan PJ, Tian J, Bolinger L, Adriany G, Andersen P, Strupp J, Ugurbil K (2009) Whole-body imaging at 7 T: preliminary results. Magn Reson Med 61:244–248CrossRefPubMed Vaughan JT, Snyder CJ, DelaBarre LJ, Bolan PJ, Tian J, Bolinger L, Adriany G, Andersen P, Strupp J, Ugurbil K (2009) Whole-body imaging at 7 T: preliminary results. Magn Reson Med 61:244–248CrossRefPubMed
8.
go back to reference Snyder CJ, DelaBarre L, Metzger GJ, van de Moortele PF, Akgun C, Ugurbil K, Vaughan JT (2009) Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 61:517–524CrossRefPubMed Snyder CJ, DelaBarre L, Metzger GJ, van de Moortele PF, Akgun C, Ugurbil K, Vaughan JT (2009) Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 61:517–524CrossRefPubMed
9.
go back to reference Frauenrath T, Hezel F, Heinrichs U, Kozerke S, Utting JF, Kob M, Butenweg C, Boesiger P, Niendorf T (2009) Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 44:539–547CrossRefPubMed Frauenrath T, Hezel F, Heinrichs U, Kozerke S, Utting JF, Kob M, Butenweg C, Boesiger P, Niendorf T (2009) Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 44:539–547CrossRefPubMed
10.
go back to reference Thiele H, Nagel E, Paetsch I, Schnackenburg B, Bornstedt A, Kouwenhoven M, Wahl A, Schuler G, Fleck E (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367CrossRefPubMed Thiele H, Nagel E, Paetsch I, Schnackenburg B, Bornstedt A, Kouwenhoven M, Wahl A, Schuler G, Fleck E (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367CrossRefPubMed
11.
go back to reference Schar M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 51:799–806CrossRefPubMed Schar M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 51:799–806CrossRefPubMed
12.
go back to reference Fuchs F, Laub G, Othomo K (2003) TrueFISP–technical considerations and cardiovascular applications. Eur J Radiol 46:28–32CrossRefPubMed Fuchs F, Laub G, Othomo K (2003) TrueFISP–technical considerations and cardiovascular applications. Eur J Radiol 46:28–32CrossRefPubMed
13.
14.
go back to reference Hendel RC, Patel MR, Kramer CM, Poon M, Hendel RC, Carr JC, Gerstad NA, Gillam LD, Hodgson JM, Kim RJ, Kramer CM, Lesser JR, Martin ET, Messer JV, Redberg RF, Rubin GD, Rumsfeld JS, Taylor AJ, Weigold WG, Woodard PK, Brindis RG, Hendel RC, Douglas PS, Peterson ED, Wolk MJ, Allen JM, Patel MR (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497CrossRefPubMed Hendel RC, Patel MR, Kramer CM, Poon M, Hendel RC, Carr JC, Gerstad NA, Gillam LD, Hodgson JM, Kim RJ, Kramer CM, Lesser JR, Martin ET, Messer JV, Redberg RF, Rubin GD, Rumsfeld JS, Taylor AJ, Weigold WG, Woodard PK, Brindis RG, Hendel RC, Douglas PS, Peterson ED, Wolk MJ, Allen JM, Patel MR (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497CrossRefPubMed
15.
go back to reference Becker M, Frauenrath T, Hezel F, Krombach GA, Kremer U, Koppers B, Butenweg C, Goemmel A, Utting JF, Schulz-Menger J, Niendorf T (2009) Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol 20:1344–1355CrossRefPubMed Becker M, Frauenrath T, Hezel F, Krombach GA, Kremer U, Koppers B, Butenweg C, Goemmel A, Utting JF, Schulz-Menger J, Niendorf T (2009) Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol 20:1344–1355CrossRefPubMed
16.
go back to reference Frauenrath T, Niendorf T, Kob M (2008) Acoustic method for synchronization of magnetic resonance imaging (MRI). Acta Acust 94:148–155CrossRef Frauenrath T, Niendorf T, Kob M (2008) Acoustic method for synchronization of magnetic resonance imaging (MRI). Acta Acust 94:148–155CrossRef
17.
go back to reference Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797CrossRefPubMed Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797CrossRefPubMed
18.
go back to reference Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426CrossRefPubMed Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426CrossRefPubMed
19.
go back to reference Grothues F, Boenigk H, Graessner J, Kanowski M, Klein HU (2007) Balanced steady-state free precession vs. segmented fast low-angle shot for the evaluation of ventricular volumes, mass, and function at 3 Tesla. J Magn Reson Imaging 26:392–400CrossRefPubMed Grothues F, Boenigk H, Graessner J, Kanowski M, Klein HU (2007) Balanced steady-state free precession vs. segmented fast low-angle shot for the evaluation of ventricular volumes, mass, and function at 3 Tesla. J Magn Reson Imaging 26:392–400CrossRefPubMed
20.
go back to reference Niendorf T, Sodickson DK (2008) Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications. Eur Radiol 18:87–102CrossRefPubMed Niendorf T, Sodickson DK (2008) Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications. Eur Radiol 18:87–102CrossRefPubMed
21.
go back to reference Versluis MJ, Tsekos N, Smith NB, Webb AG (2009) Simple RF design for human functional and morphological cardiac imaging at 7tesla. J Magn Reson 200:161–166CrossRefPubMed Versluis MJ, Tsekos N, Smith NB, Webb AG (2009) Simple RF design for human functional and morphological cardiac imaging at 7tesla. J Magn Reson 200:161–166CrossRefPubMed
22.
go back to reference Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14:230–236CrossRefPubMed Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14:230–236CrossRefPubMed
23.
go back to reference Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269PubMed Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269PubMed
24.
go back to reference Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329CrossRefPubMed Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329CrossRefPubMed
25.
go back to reference Li W, Stern JS, Mai VM, Pierchala LN, Edelman RR, Prasad PV (2002) MR assessment of left ventricular function: quantitative comparison of fast imaging employing steady-state acquisition (FIESTA) with fast gradient echo cine technique. J Magn Reson Imaging 16:559–564CrossRefPubMed Li W, Stern JS, Mai VM, Pierchala LN, Edelman RR, Prasad PV (2002) MR assessment of left ventricular function: quantitative comparison of fast imaging employing steady-state acquisition (FIESTA) with fast gradient echo cine technique. J Magn Reson Imaging 16:559–564CrossRefPubMed
26.
go back to reference Hudsmith LE, Petersen SE, Tyler DJ, Francis JM, Cheng AS, Clarke K, Selvanayagam JB, Robson MD, Neubauer S (2006) Determination of cardiac volumes and mass with FLASH and SSFP cine sequences at 1.5 vs. 3 Tesla: a validation study. J Magn Reson Imaging 24:312–318CrossRefPubMed Hudsmith LE, Petersen SE, Tyler DJ, Francis JM, Cheng AS, Clarke K, Selvanayagam JB, Robson MD, Neubauer S (2006) Determination of cardiac volumes and mass with FLASH and SSFP cine sequences at 1.5 vs. 3 Tesla: a validation study. J Magn Reson Imaging 24:312–318CrossRefPubMed
27.
go back to reference Malayeri AA, Johnson WC, Macedo R, Bathon J, Lima JA, Bluemke DA (2008) Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging 28:60–66CrossRefPubMed Malayeri AA, Johnson WC, Macedo R, Bathon J, Lima JA, Bluemke DA (2008) Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging 28:60–66CrossRefPubMed
28.
go back to reference von Knobelsdorff-Brenkenhoff F, Rudolph A, Wassmuth R, Bohl S, Buschmann EE, Abdel-Aty H, Dietz R, Schulz-Menger J (2009) Feasibility of cardiovascular magnetic resonance to assess the orifice area of aortic bioprostheses. Circ Cardiovasc Imaging 2:397–404CrossRef von Knobelsdorff-Brenkenhoff F, Rudolph A, Wassmuth R, Bohl S, Buschmann EE, Abdel-Aty H, Dietz R, Schulz-Menger J (2009) Feasibility of cardiovascular magnetic resonance to assess the orifice area of aortic bioprostheses. Circ Cardiovasc Imaging 2:397–404CrossRef
Metadata
Title
Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study
Authors
Florian von Knobelsdorff-Brenkenhoff
Tobias Frauenrath
Marcel Prothmann
Matthias A. Dieringer
Fabian Hezel
Wolfgang Renz
Kerstin Kretschel
Thoralf Niendorf
Jeanette Schulz-Menger
Publication date
01-12-2010
Publisher
Springer-Verlag
Published in
European Radiology / Issue 12/2010
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-010-1888-2

Other articles of this Issue 12/2010

European Radiology 12/2010 Go to the issue