Skip to main content
Top
Published in: European Radiology 5/2007

Open Access 01-05-2007 | Musculoskeletal

Cartilage imaging: motivation, techniques, current and future significance

Authors: Thomas M. Link, Robert Stahl, Klaus Woertler

Published in: European Radiology | Issue 5/2007

Login to get access

Abstract

Cartilage repair techniques and pharmacological therapies are currently areas of major clinical interest and research, in particular to prevent and treat osteoarthritis. MR imaging-based techniques to visualize cartilage are prerequisites to guide and monitor these therapies. In this review article, standard MR imaging sequences are described, including proton density-weighted fast spin echo, spoiled gradient echo and dual echo steady state sequences. In addition, new sequences that have been developed and are currently being investigated are presented, including driven equilibrium Fourier transform and steady-state free precession-based imaging. Using high-field MR imaging at 3.0-T, visualization of cartilage and the related pathology has been improved. Volumetric quantitative cartilage MR imaging was developed as a tool to monitor the progression of osteoarthritis and to evaluate new pharmacological cartilage protective therapies. The most exciting developments, however, are in the field of cartilage matrix assessment with quantitative dGEMRIC, T2 and T1rho mapping techniques. These techniques aim at detecting cartilage damage at a stage when changes are potentially still reversible, before cartilage tissue is lost. There is currently substantial interest in these techniques from rheumatologists and orthopedists; radiologists therefore need to keep up with these developments.
Literature
1.
go back to reference Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85:223–230PubMedCrossRef Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85:223–230PubMedCrossRef
2.
go back to reference Cain EL, Clancy WG (2001) Treatment algorithm for osteochondral injuries of the knee. Clin Sports Med 20:321–342PubMedCrossRef Cain EL, Clancy WG (2001) Treatment algorithm for osteochondral injuries of the knee. Clin Sports Med 20:321–342PubMedCrossRef
3.
go back to reference Koulalis D, Schultz W, Heyden M, Konig F (2003) Autologous osteochondral grafts in the treatment of cartilage defects of the knee joint. Knee Surg Sports Traumatol Arthrose 12:329–334 Koulalis D, Schultz W, Heyden M, Konig F (2003) Autologous osteochondral grafts in the treatment of cartilage defects of the knee joint. Knee Surg Sports Traumatol Arthrose 12:329–334
4.
go back to reference Imhoff AB, Oettl GM (2000) Arthroscopic and open techniques for transplantation of osteochondral autografts and allografts in various joints. Surg Technol Int VIII:249–252PubMed Imhoff AB, Oettl GM (2000) Arthroscopic and open techniques for transplantation of osteochondral autografts and allografts in various joints. Surg Technol Int VIII:249–252PubMed
5.
go back to reference Hangody L (2003) The mosaicplasty technique for osteochondral lesions of the talus. Foot Ankle Clin 8:259–273PubMedCrossRef Hangody L (2003) The mosaicplasty technique for osteochondral lesions of the talus. Foot Ankle Clin 8:259–273PubMedCrossRef
6.
go back to reference Link TM, Mischung J, Wortler K, Burkart A, Rummeny EJ, Imhoff AB (2006) Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up. Eur Radiol 16:88–96PubMedCrossRef Link TM, Mischung J, Wortler K, Burkart A, Rummeny EJ, Imhoff AB (2006) Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up. Eur Radiol 16:88–96PubMedCrossRef
7.
go back to reference Kawasaki K, Uchio Y, Adachi N, Iwasa J, Ochi M (2003) Drilling from the intercondylar area for treatment of osteochondritis dissecans of the knee joint. Knee 10:257–263PubMedCrossRef Kawasaki K, Uchio Y, Adachi N, Iwasa J, Ochi M (2003) Drilling from the intercondylar area for treatment of osteochondritis dissecans of the knee joint. Knee 10:257–263PubMedCrossRef
8.
go back to reference James SL, Connell DA, Saifuddin A, Skinner JA, Briggs TW (2006) MR imaging of autologous chondrocyte implantation of the knee. Eur Radiol 16:1022–1030PubMedCrossRef James SL, Connell DA, Saifuddin A, Skinner JA, Briggs TW (2006) MR imaging of autologous chondrocyte implantation of the knee. Eur Radiol 16:1022–1030PubMedCrossRef
9.
go back to reference Henderson IJ, Tuy B, Connell D, Oakes B, Hettwer WH (2003) Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at 3 and 12 months. J Bone Joint Surg Br 85:1060–1066PubMedCrossRef Henderson IJ, Tuy B, Connell D, Oakes B, Hettwer WH (2003) Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at 3 and 12 months. J Bone Joint Surg Br 85:1060–1066PubMedCrossRef
10.
go back to reference Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison PE, Richardson JB (2003) Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther 5:R60–R73PubMedCrossRef Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison PE, Richardson JB (2003) Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther 5:R60–R73PubMedCrossRef
11.
go back to reference Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint A prospective, comparative trial. J Bone Joint Surg Am 85-A:185–192PubMed Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint A prospective, comparative trial. J Bone Joint Surg Am 85-A:185–192PubMed
12.
go back to reference Fajardo M, Di Cesare PE (2005) Disease-modifying therapies for osteoarthritis: current status. Drugs Aging 22:141–161PubMedCrossRef Fajardo M, Di Cesare PE (2005) Disease-modifying therapies for osteoarthritis: current status. Drugs Aging 22:141–161PubMedCrossRef
13.
go back to reference Volpi N (2004) The pathobiology of osteoarthritis and the rationale for using the chondroitin sulfate for its treatment. Curr Drug Targets Immune Endocr Metabol Disord 4:119–127PubMedCrossRef Volpi N (2004) The pathobiology of osteoarthritis and the rationale for using the chondroitin sulfate for its treatment. Curr Drug Targets Immune Endocr Metabol Disord 4:119–127PubMedCrossRef
14.
go back to reference Link TM, Sell CA, Masi JN, Phan C, Newitt D, Lu Y, Steinbach L, Majumdar S (2005) 3.0 vs 1.5T MRI in the detection of focal cartilage pathology-ROC analysis in an experimental model. Osteoarthr Cartil 14:63–70PubMedCrossRef Link TM, Sell CA, Masi JN, Phan C, Newitt D, Lu Y, Steinbach L, Majumdar S (2005) 3.0 vs 1.5T MRI in the detection of focal cartilage pathology-ROC analysis in an experimental model. Osteoarthr Cartil 14:63–70PubMedCrossRef
15.
go back to reference Masi JN, Sell CA, Phan C, Han E, Newitt D, Steinbach L, Majumdar S, Link TM (2005) Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology 236:140–150PubMedCrossRef Masi JN, Sell CA, Phan C, Han E, Newitt D, Steinbach L, Majumdar S, Link TM (2005) Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology 236:140–150PubMedCrossRef
16.
go back to reference Yoshioka H, Stevens K, Hargreaves BA, Steines D, Genovese M, Dillingham MF, Winalski CS, Lang P (2004) Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 20:857–864PubMedCrossRef Yoshioka H, Stevens K, Hargreaves BA, Steines D, Genovese M, Dillingham MF, Winalski CS, Lang P (2004) Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 20:857–864PubMedCrossRef
17.
go back to reference Bredella MA, Tirman PF, Peterfy CG, Zarlingo M, Feller JF, Bost FW, Belzer JP, Wischer TK, Genant HK (1999) Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 172:1073–1080PubMed Bredella MA, Tirman PF, Peterfy CG, Zarlingo M, Feller JF, Bost FW, Belzer JP, Wischer TK, Genant HK (1999) Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 172:1073–1080PubMed
18.
go back to reference Woertler K, Strothmann M, Tombach B, Reimer P (2000) Detection of articular cartilage lesions: experimental evaluation of low-and high-field-strength MR imaging at 0.18 and 1.0 T. J Magn Reson Imaging 11:678–685PubMedCrossRef Woertler K, Strothmann M, Tombach B, Reimer P (2000) Detection of articular cartilage lesions: experimental evaluation of low-and high-field-strength MR imaging at 0.18 and 1.0 T. J Magn Reson Imaging 11:678–685PubMedCrossRef
19.
go back to reference Ruehm S, Zanetti M, Romero J, Hodler J (1998) MRI of patellar articular cartilage: evaluation of an optimized gradient echo sequence (3D-DESS). J Magn Reson Imaging 8:1246–1251PubMedCrossRef Ruehm S, Zanetti M, Romero J, Hodler J (1998) MRI of patellar articular cartilage: evaluation of an optimized gradient echo sequence (3D-DESS). J Magn Reson Imaging 8:1246–1251PubMedCrossRef
20.
go back to reference Kladny B, Gluckert K, Swoboda B, Beyer W, Weseloh G (1995) Comparison of low-field (0.2 Tesla) and high-field (1.5 Tesla) magnetic resonance imaging of the knee joint. Arch Orthop Trauma Surg 114:281–286PubMedCrossRef Kladny B, Gluckert K, Swoboda B, Beyer W, Weseloh G (1995) Comparison of low-field (0.2 Tesla) and high-field (1.5 Tesla) magnetic resonance imaging of the knee joint. Arch Orthop Trauma Surg 114:281–286PubMedCrossRef
21.
go back to reference Vahlensieck M, Schnieber O (2003) [Performance of an open low-field MR unit in routine examination of knee lesions and comparison with high field systems]. Orthopade 32:175–178PubMedCrossRef Vahlensieck M, Schnieber O (2003) [Performance of an open low-field MR unit in routine examination of knee lesions and comparison with high field systems]. Orthopade 32:175–178PubMedCrossRef
22.
go back to reference Bauer J, Barr C, Steinbach L, Malfair D, Krug R, Ma C, Link T (2006) Imaging of the articular cartilage of the ankle at 3.0 and 1.5 Tesla. Eur Radiol Supplements 16 (S1):238 Bauer J, Barr C, Steinbach L, Malfair D, Krug R, Ma C, Link T (2006) Imaging of the articular cartilage of the ankle at 3.0 and 1.5 Tesla. Eur Radiol Supplements 16 (S1):238
23.
go back to reference Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183:343–351PubMed Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183:343–351PubMed
24.
go back to reference Gold GE, Suh B, Sawyer-Glover A, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: initial clinical experience. AJR Am J Roentgenol 183:1479–1486PubMed Gold GE, Suh B, Sawyer-Glover A, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: initial clinical experience. AJR Am J Roentgenol 183:1479–1486PubMed
25.
go back to reference Fischbach F, Bruhn H, Unterhauser F, Ricke J, Wieners G, Felix R, Weiler A, Schroder RJ (2005) Magnetic resonance imaging of hyaline cartilage defects at 1.5T and 3.0T: comparison of medium T2-weighted fast spin echo, T1-weighted two-dimensional and three-dimensional gradient echo pulse sequences. Acta Radiol 46:67–73PubMedCrossRef Fischbach F, Bruhn H, Unterhauser F, Ricke J, Wieners G, Felix R, Weiler A, Schroder RJ (2005) Magnetic resonance imaging of hyaline cartilage defects at 1.5T and 3.0T: comparison of medium T2-weighted fast spin echo, T1-weighted two-dimensional and three-dimensional gradient echo pulse sequences. Acta Radiol 46:67–73PubMedCrossRef
26.
go back to reference Kornaat PR, Reeder SB, Koo S, Brittain JH, Yu H, Andriacchi TP, Gold GE (2005) MR imaging of articular cartilage at 1.5 T and 3.0 T: comparison of SPGR and SSFP sequences. Osteoarthritis Cartilage 13:338–344PubMedCrossRef Kornaat PR, Reeder SB, Koo S, Brittain JH, Yu H, Andriacchi TP, Gold GE (2005) MR imaging of articular cartilage at 1.5 T and 3.0 T: comparison of SPGR and SSFP sequences. Osteoarthritis Cartilage 13:338–344PubMedCrossRef
27.
go back to reference Hargreaves BA, Gold GE, Lang PK, Conolly SM, Pauly JM, Bergman G, Vandevenne J, Nishimura DG (1999) MR imaging of articular cartilage using driven equilibrium. Magn Reson Med 42:695–703PubMedCrossRef Hargreaves BA, Gold GE, Lang PK, Conolly SM, Pauly JM, Bergman G, Vandevenne J, Nishimura DG (1999) MR imaging of articular cartilage using driven equilibrium. Magn Reson Med 42:695–703PubMedCrossRef
28.
go back to reference Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF (2005) Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 21:476–481PubMedCrossRef Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF (2005) Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 21:476–481PubMedCrossRef
29.
go back to reference Hargreaves BA, Gold GE, Beaulieu CF, Vasanawala SS, Nishimura DG, Pauly JM (2003) Comparison of new sequences for high-resolution cartilage imaging. Magn Reson Med 49:700–709PubMedCrossRef Hargreaves BA, Gold GE, Beaulieu CF, Vasanawala SS, Nishimura DG, Pauly JM (2003) Comparison of new sequences for high-resolution cartilage imaging. Magn Reson Med 49:700–709PubMedCrossRef
30.
go back to reference Gagliardi JA, Chung EM, Chandnani VP, Kesling KL, Christensen KP, Null RN, Radvany MG, Hansen MF (1994) Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 163:629–636PubMed Gagliardi JA, Chung EM, Chandnani VP, Kesling KL, Christensen KP, Null RN, Radvany MG, Hansen MF (1994) Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 163:629–636PubMed
31.
go back to reference Kramer J, Recht MP, Imhof H, Stiglbauer R, Engel A (1994) Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr 18:218–224PubMedCrossRef Kramer J, Recht MP, Imhof H, Stiglbauer R, Engel A (1994) Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr 18:218–224PubMedCrossRef
32.
go back to reference Woertler K, Rummeny EJ, Settles M (2005) A fast high-resolution multislice T1-weighted turbo spin-echo (TSE) sequence with a DRIVen equilibrium (DRIVE) pulse for native arthrographic contrast. AJR Am J Roentgenol 185:1468–1470PubMedCrossRef Woertler K, Rummeny EJ, Settles M (2005) A fast high-resolution multislice T1-weighted turbo spin-echo (TSE) sequence with a DRIVen equilibrium (DRIVE) pulse for native arthrographic contrast. AJR Am J Roentgenol 185:1468–1470PubMedCrossRef
33.
go back to reference Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Beaudoin G, Choquette D, Haraoui B, Tannenbaum H, Meyer JM, Beary JF, Cline GA, Pelletier JP (2005) Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther 8:R21PubMedCrossRef Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Beaudoin G, Choquette D, Haraoui B, Tannenbaum H, Meyer JM, Beary JF, Cline GA, Pelletier JP (2005) Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther 8:R21PubMedCrossRef
34.
go back to reference Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Labonte F, Beaudoin G, de Guise JA, Bloch DA, Choquette D, Haraoui B, Altman RD, Hochberg MC, Meyer JM, Cline GA, Pelletier JP (2004) Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum 50:476–487PubMedCrossRef Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Labonte F, Beaudoin G, de Guise JA, Bloch DA, Choquette D, Haraoui B, Altman RD, Hochberg MC, Meyer JM, Cline GA, Pelletier JP (2004) Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum 50:476–487PubMedCrossRef
35.
go back to reference Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, Link TM, Steinbach LS, Majumdar S (2004) A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthr Cartil 12:997–1005PubMedCrossRef Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, Link TM, Steinbach LS, Majumdar S (2004) A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthr Cartil 12:997–1005PubMedCrossRef
36.
go back to reference Ghosh S, Ries M, Lane N, Ghajar C, Majumdar S (2000) Segmentation of high resolution articular cartilage MR images. Trans Orthoped Res Soc (ORS):246 Ghosh S, Ries M, Lane N, Ghajar C, Majumdar S (2000) Segmentation of high resolution articular cartilage MR images. Trans Orthoped Res Soc (ORS):246
37.
go back to reference Solloway S, Hutchinson CE, Waterton JC, Taylor CJ (1997) The use of active shape models for making thickness measurements of articular cartilage from MR images. Magn Reson Med 37:943–952PubMedCrossRef Solloway S, Hutchinson CE, Waterton JC, Taylor CJ (1997) The use of active shape models for making thickness measurements of articular cartilage from MR images. Magn Reson Med 37:943–952PubMedCrossRef
38.
go back to reference Stammberger T, Eckstein F, Michaelis M, Englmeier KH, Reiser M (1999) Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation. Magn Reson Imaging 17:1033–1042PubMedCrossRef Stammberger T, Eckstein F, Michaelis M, Englmeier KH, Reiser M (1999) Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation. Magn Reson Imaging 17:1033–1042PubMedCrossRef
39.
go back to reference Eckstein F, Heudorfer L, Faber SC, Burgkart R, Englmeier KH, Reiser M (2002) Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthr Cartil 10:922–928PubMedCrossRef Eckstein F, Heudorfer L, Faber SC, Burgkart R, Englmeier KH, Reiser M (2002) Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthr Cartil 10:922–928PubMedCrossRef
40.
go back to reference Burgkart R, Glaser C, Hyhlik-Durr A, Englmeier KH, Reiser M, Eckstein F (2001) Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: accuracy, precision, and diagnostic value. Arthritis Rheum 44:2072–2077PubMedCrossRef Burgkart R, Glaser C, Hyhlik-Durr A, Englmeier KH, Reiser M, Eckstein F (2001) Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: accuracy, precision, and diagnostic value. Arthritis Rheum 44:2072–2077PubMedCrossRef
41.
go back to reference Burgkart R, Glaser C, Hinterwimmer S, Hudelmaier M, Englmeier KH, Reiser M, Eckstein F (2003) Feasibility of T and Z scores from magnetic resonance imaging data for quantification of cartilage loss in osteoarthritis. Arthritis Rheum 48:2829–2835PubMedCrossRef Burgkart R, Glaser C, Hinterwimmer S, Hudelmaier M, Englmeier KH, Reiser M, Eckstein F (2003) Feasibility of T and Z scores from magnetic resonance imaging data for quantification of cartilage loss in osteoarthritis. Arthritis Rheum 48:2829–2835PubMedCrossRef
42.
go back to reference Eckstein F, Charles HC, Buck RJ, Kraus VB, Remmers AE, Hudelmaier M, Wirth W, Evelhoch JL (2005) Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0 T. Arthritis Rheum 52:3132–3136PubMedCrossRef Eckstein F, Charles HC, Buck RJ, Kraus VB, Remmers AE, Hudelmaier M, Wirth W, Evelhoch JL (2005) Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0 T. Arthritis Rheum 52:3132–3136PubMedCrossRef
43.
go back to reference Bauer J, S K, Ross C, Mueller D, Majumdar S, Link T (2005) Accuracy of volumetric cartilage measurements of the knee at 1.5 T and 3.0 T. In: RSNA, Chicago, p 305 Bauer J, S K, Ross C, Mueller D, Majumdar S, Link T (2005) Accuracy of volumetric cartilage measurements of the knee at 1.5 T and 3.0 T. In: RSNA, Chicago, p 305
44.
go back to reference Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, Imhof H (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging 17:577–583PubMedCrossRef Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, Imhof H (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging 17:577–583PubMedCrossRef
45.
go back to reference Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865PubMedCrossRef Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865PubMedCrossRef
46.
go back to reference Burstein D, Gray M (2003) New MRI techniques for imaging cartilage. J Bone Joint Surg Am 85-A Suppl 2:70–77PubMed Burstein D, Gray M (2003) New MRI techniques for imaging cartilage. J Bone Joint Surg Am 85-A Suppl 2:70–77PubMed
47.
go back to reference Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D (2001) Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol 36:743–748PubMedCrossRef Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D (2001) Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol 36:743–748PubMedCrossRef
48.
go back to reference Williams A, Gillis A, McKenzie C, Po B, Sharma L, Micheli L, McKeon B, Burstein D (2004) Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 182:167–172PubMed Williams A, Gillis A, McKenzie C, Po B, Sharma L, Micheli L, McKeon B, Burstein D (2004) Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 182:167–172PubMed
49.
go back to reference Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D (2005) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 52:3528–3535PubMedCrossRef Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D (2005) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 52:3528–3535PubMedCrossRef
50.
go back to reference Woertler K, Buerger H, Moeller J, Rummeny EJ (2004) Patellar articular cartilage lesions: in vitro MR imaging evaluation after placement in gadopentetate dimeglumine solution. Radiology 230:768–773PubMedCrossRef Woertler K, Buerger H, Moeller J, Rummeny EJ (2004) Patellar articular cartilage lesions: in vitro MR imaging evaluation after placement in gadopentetate dimeglumine solution. Radiology 230:768–773PubMedCrossRef
51.
go back to reference Wiener E, Woertler K, Settles M, Rummeny E (2006) Quantification of T1 and T2 in the presence of Gd-DTPA of proteoglycan and collagen depleted cartilage. Eur Radiol (Suppl) 16:238 Wiener E, Woertler K, Settles M, Rummeny E (2006) Quantification of T1 and T2 in the presence of Gd-DTPA of proteoglycan and collagen depleted cartilage. Eur Radiol (Suppl) 16:238
52.
go back to reference Liess C, Lusse S, Karger N, Heller M, Gluer CC (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil 10:907–913PubMedCrossRef Liess C, Lusse S, Karger N, Heller M, Gluer CC (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil 10:907–913PubMedCrossRef
53.
go back to reference Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550PubMed Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550PubMed
54.
go back to reference Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2–preliminary findings at 3 T. Radiology 214:259–266PubMed Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2–preliminary findings at 3 T. Radiology 214:259–266PubMed
55.
go back to reference Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, Smith MB (2005) Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology 234:245–249PubMedCrossRef Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, Smith MB (2005) Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology 234:245–249PubMedCrossRef
56.
go back to reference Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232:592–598PubMedCrossRef Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232:592–598PubMedCrossRef
57.
go back to reference Regatte RR, Akella SV, Wheaton AJ, Lech G, Borthakur A, Kneeland JB, Reddy R (2004) 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol 11:741–749PubMed Regatte RR, Akella SV, Wheaton AJ, Lech G, Borthakur A, Kneeland JB, Reddy R (2004) 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol 11:741–749PubMed
58.
go back to reference Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R (2003) In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. Radiology 229:269–274PubMedCrossRef Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R (2003) In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. Radiology 229:269–274PubMedCrossRef
59.
go back to reference Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S (2005) In vivo 3-T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med 54:929–936PubMedCrossRef Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S (2005) In vivo 3-T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med 54:929–936PubMedCrossRef
60.
go back to reference Filidoro L, Dietrich O, Weber J, Rauch E, Oerther T, Wick M, Reiser MF, Glaser C (2005) High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn Reson Med 53:993–998PubMedCrossRef Filidoro L, Dietrich O, Weber J, Rauch E, Oerther T, Wick M, Reiser MF, Glaser C (2005) High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn Reson Med 53:993–998PubMedCrossRef
Metadata
Title
Cartilage imaging: motivation, techniques, current and future significance
Authors
Thomas M. Link
Robert Stahl
Klaus Woertler
Publication date
01-05-2007
Publisher
Springer-Verlag
Published in
European Radiology / Issue 5/2007
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-006-0453-5

Other articles of this Issue 5/2007

European Radiology 5/2007 Go to the issue