Skip to main content
Top
Published in: European Radiology 2/2004

01-02-2004 | Vascular–Interventional

Self-expanding nitinol stents: material and design considerations

Authors: Dieter Stoeckel, Alan Pelton, Tom Duerig

Published in: European Radiology | Issue 2/2004

Login to get access

Abstract

Nitinol (nickel–titanium) alloys exhibit a combination of properties which make these alloys particularly suited for self-expanding stents. Some of these properties cannot be found in engineering materials used for stents presently. This article explains the fundamental mechanism of shape memory and superelasticity, and how they relate to the characteristic performance of self-expanding stents. Nitinol stents are manufactured to a size slightly larger than the target vessel size and delivered constrained in a delivery system. After deployment, they position themselves against the vessel wall with a low, "chronic" outward force. They resist outside forces with a significantly higher radial resistive force. Despite the high nickel content of Nitinol, its corrosion resistance and biocompatibility is equal to that of other implant materials. The most common Nitinol stents are listed and described.
Literature
1.
go back to reference Dotter CT, Buschmann PAC, McKinney MK, Rösch J (1983) Transluminal expandable nitinol coil stent grafting: preliminary report. Radiology 147:259PubMed Dotter CT, Buschmann PAC, McKinney MK, Rösch J (1983) Transluminal expandable nitinol coil stent grafting: preliminary report. Radiology 147:259PubMed
2.
go back to reference Shabalovskaya S (1996) On the nature of the biocompatibility and medical applications of NiTi shape memory and superelastic alloys. Bio Med Mat Eng 6:267 Shabalovskaya S (1996) On the nature of the biocompatibility and medical applications of NiTi shape memory and superelastic alloys. Bio Med Mat Eng 6:267
3.
go back to reference Duerig TW, Melton KN, Wayman CM, Stöckel D (1990) Engineering aspects of shape-memory alloys. Butterworth-Heinemann, London Duerig TW, Melton KN, Wayman CM, Stöckel D (1990) Engineering aspects of shape-memory alloys. Butterworth-Heinemann, London
4.
go back to reference Stoeckel D (2000) Nitinol medical devices and implants. Min Invas Ther Allied Technol 9:81 Stoeckel D (2000) Nitinol medical devices and implants. Min Invas Ther Allied Technol 9:81
5.
go back to reference ASTM F 2063–00 (2002) Standard specification for wrought nickel–titanium shape-memory alloys for medical devices and surgical implants ASTM F 2063–00 (2002) Standard specification for wrought nickel–titanium shape-memory alloys for medical devices and surgical implants
6.
go back to reference ASTM F 2004–00 (2002) Test method for transformation temperature of nickel-titanium alloys by thermal analysis ASTM F 2004–00 (2002) Test method for transformation temperature of nickel-titanium alloys by thermal analysis
7.
go back to reference ASTM F 2082–01 (2002) Method for the determination of transformation temperature of nickel–titanium shape-memory alloys by bend and free recovery ASTM F 2082–01 (2002) Method for the determination of transformation temperature of nickel–titanium shape-memory alloys by bend and free recovery
8.
go back to reference Pelton AR, DiCello J, Miyazaki S (2000) Optimisation of processing and properties of medical grade Nitinol wire. Min Invas Ther Allied Technol 9:107 Pelton AR, DiCello J, Miyazaki S (2000) Optimisation of processing and properties of medical grade Nitinol wire. Min Invas Ther Allied Technol 9:107
9.
go back to reference Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM (1997) Cytotoxic, allergic and genotoxic activity of a nickel–titanium alloy. Biomaterials 18:1115CrossRefPubMed Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM (1997) Cytotoxic, allergic and genotoxic activity of a nickel–titanium alloy. Biomaterials 18:1115CrossRefPubMed
10.
go back to reference Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DRA, van Horn JR (1998) Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials 19:761CrossRefPubMed Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DRA, van Horn JR (1998) Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials 19:761CrossRefPubMed
11.
go back to reference Brown SA, Hughes PJ, Merritt K (1988) In vitro studies of fretting corrosion of orthopaedic materials. J Orthop Res 6:572PubMed Brown SA, Hughes PJ, Merritt K (1988) In vitro studies of fretting corrosion of orthopaedic materials. J Orthop Res 6:572PubMed
12.
go back to reference Barrett RD, Bishara SE, Quinn JK (1993) Biodegradation of orthodontic appliances: part I, biodegradation of nickel and chromium in vitro. Am J Orthod Dentofac Orthop 103:8 Barrett RD, Bishara SE, Quinn JK (1993) Biodegradation of orthodontic appliances: part I, biodegradation of nickel and chromium in vitro. Am J Orthod Dentofac Orthop 103:8
13.
go back to reference Bishara SE, Barrett RD, Selim MI (1993) Biodegradation of orthodontic appliances. Part II: Changes in the blood level of nickel. Am J Orthod Dentofac Orthop 103:115 Bishara SE, Barrett RD, Selim MI (1993) Biodegradation of orthodontic appliances. Part II: Changes in the blood level of nickel. Am J Orthod Dentofac Orthop 103:115
14.
go back to reference Ryhanen J, Niemi E, Serlo W, Niemelä E, Sandvik P, Pernu H, Salo T (1997) Biocompatibility of nickel–titanium shape-memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35:451PubMed Ryhanen J, Niemi E, Serlo W, Niemelä E, Sandvik P, Pernu H, Salo T (1997) Biocompatibility of nickel–titanium shape-memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35:451PubMed
15.
go back to reference Trepanier C, Venugopolan R, Messer R, Zimmerman J, Pelton AR (2000) Effect of passivation treatments on nickel release from Nitinol. Proc Soc Biomater:1043 Trepanier C, Venugopolan R, Messer R, Zimmerman J, Pelton AR (2000) Effect of passivation treatments on nickel release from Nitinol. Proc Soc Biomater:1043
16.
go back to reference ASTM F2129–01 (2002) Standard test method for conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices ASTM F2129–01 (2002) Standard test method for conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices
17.
go back to reference Trepanier C, Tabizian M, Yahia LH, Bilodeau L, Piron DL (1998) Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res 43:433CrossRefPubMed Trepanier C, Tabizian M, Yahia LH, Bilodeau L, Piron DL (1998) Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res 43:433CrossRefPubMed
18.
go back to reference Trepanier C, Fino J, Zhu L, Pelton AR (2002) Corrosion resistance of oxidized Nitinol. SMST Trepanier C, Fino J, Zhu L, Pelton AR (2002) Corrosion resistance of oxidized Nitinol. SMST
19.
go back to reference Heintz C, Riepe G, Birken L, Kaiser E, Chafke N, Morlock M, Delling G, Imig H (2001) Corroded Nitinol wires in explanted aortic endografts: an important mechanism of failure? J Endovasc Ther 8:248PubMed Heintz C, Riepe G, Birken L, Kaiser E, Chafke N, Morlock M, Delling G, Imig H (2001) Corroded Nitinol wires in explanted aortic endografts: an important mechanism of failure? J Endovasc Ther 8:248PubMed
20.
go back to reference Kaiser E (2002) Cell-induced corrosion in vitro. Second European Sym Vasc Biomat, Hamburg Kaiser E (2002) Cell-induced corrosion in vitro. Second European Sym Vasc Biomat, Hamburg
21.
go back to reference Duerig TW, Pelton AR, Stöckel D (1996) The use of superelasticity in medicine. Metall 50:569 Duerig TW, Pelton AR, Stöckel D (1996) The use of superelasticity in medicine. Metall 50:569
22.
go back to reference Duerig TW, Tolomeo DE, Wholey M (2000) An overview of superelastic stent design. Min Invas Ther Allied Technol 9:235 Duerig TW, Tolomeo DE, Wholey M (2000) An overview of superelastic stent design. Min Invas Ther Allied Technol 9:235
23.
go back to reference Harnek J, Zoucas E, Stenram U, Cwikiel W (2002) Insertion of self-expandable Nitinol stents without previous balloon angioplasty reduces restenosis compared with PTA prior to stenting. Cardiovasc Intervent Radiol 5:430CrossRef Harnek J, Zoucas E, Stenram U, Cwikiel W (2002) Insertion of self-expandable Nitinol stents without previous balloon angioplasty reduces restenosis compared with PTA prior to stenting. Cardiovasc Intervent Radiol 5:430CrossRef
24.
go back to reference Duda S, Wiskirchen J, Tepe G, Bitzer M, Kaulich TW, Stoeckel D, Claussen C (2000) Physical properties of endovascular stents: an experimental comparison. J Vasc Interv Radiol 11:645PubMed Duda S, Wiskirchen J, Tepe G, Bitzer M, Kaulich TW, Stoeckel D, Claussen C (2000) Physical properties of endovascular stents: an experimental comparison. J Vasc Interv Radiol 11:645PubMed
25.
go back to reference Sigwart U (1996) The coiled sheet concept. In: Sigwart U (ed) Endoluminal stenting. Saunders, London, pp 249–250 Sigwart U (1996) The coiled sheet concept. In: Sigwart U (ed) Endoluminal stenting. Saunders, London, pp 249–250
26.
go back to reference Stoeckel D, Bonsignore C, Duda S (2002) A survey of stent designs. Min Invas Ther Allied Technol 11:137CrossRef Stoeckel D, Bonsignore C, Duda S (2002) A survey of stent designs. Min Invas Ther Allied Technol 11:137CrossRef
Metadata
Title
Self-expanding nitinol stents: material and design considerations
Authors
Dieter Stoeckel
Alan Pelton
Tom Duerig
Publication date
01-02-2004
Publisher
Springer-Verlag
Published in
European Radiology / Issue 2/2004
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-003-2022-5

Other articles of this Issue 2/2004

European Radiology 2/2004 Go to the issue

Interpretation corner

A frontal mass (2004:2a)