Skip to main content
Top
Published in: Seminars in Immunopathology 3/2016

01-05-2016 | Review

Transient Receptor Potential (TRP) channels in T cells

Authors: Samuel Bertin, Eyal Raz

Published in: Seminars in Immunopathology | Issue 3/2016

Login to get access

Abstract

The transient receptor potential (TRP) family of ion channels is widely expressed in many cell types and plays various physiological roles. Growing evidence suggests that certain TRP channels are functionally expressed in the immune system. Indeed, an increasing number of reports have demonstrated the functional expression of several TRP channels in innate and adaptive immune cells and have highlighted their critical role in the activation and function of these cells. However, very few reviews have been entirely dedicated to this subject. Here, we will summarize the recent findings with regards to TRP channel expression in T cells and discuss their emerging role as regulators of T cell activation and functions. Moreover, these studies suggest that beyond their pharmaceutical interest in pain management, certain TRP channels may represent potential novel therapeutic targets for various immune-related diseases.
Literature
3.
go back to reference Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2:a003962PubMedPubMedCentralCrossRef Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2:a003962PubMedPubMedCentralCrossRef
4.
go back to reference Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66:676–814PubMedCrossRef Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66:676–814PubMedCrossRef
6.
go back to reference Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717PubMedCrossRef Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717PubMedCrossRef
7.
go back to reference Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858PubMedCrossRef Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858PubMedCrossRef
10.
go back to reference Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930PubMed Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930PubMed
13.
14.
go back to reference Nohara LL, Stanwood SR, Omilusik KD, Jefferies WA (2015) Tweeters, woofers and horns: the complex orchestration of calcium currents in T lymphocytes. Front Immunol 6:234PubMedPubMedCentralCrossRef Nohara LL, Stanwood SR, Omilusik KD, Jefferies WA (2015) Tweeters, woofers and horns: the complex orchestration of calcium currents in T lymphocytes. Front Immunol 6:234PubMedPubMedCentralCrossRef
15.
go back to reference Schwarz EC, Wolfs MJ, Tonner S, Wenning AS, Quintana A, Griesemer D, Hoth M (2007) TRP channels in lymphocytes. Handb Exp Pharmacol 179:445–456PubMedCrossRef Schwarz EC, Wolfs MJ, Tonner S, Wenning AS, Quintana A, Griesemer D, Hoth M (2007) TRP channels in lymphocytes. Handb Exp Pharmacol 179:445–456PubMedCrossRef
16.
go back to reference Inada H, Iida T, Tominaga M (2006) Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun 350:762–767PubMedCrossRef Inada H, Iida T, Tominaga M (2006) Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun 350:762–767PubMedCrossRef
17.
go back to reference Wenning AS, Neblung K, Strauss B, Wolfs MJ, Sappok A, Hoth M, Schwarz EC (2011) TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. Biochim Biophys Acta 1813:412–423PubMedCrossRef Wenning AS, Neblung K, Strauss B, Wolfs MJ, Sappok A, Hoth M, Schwarz EC (2011) TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. Biochim Biophys Acta 1813:412–423PubMedCrossRef
18.
go back to reference Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–458PubMedCrossRef Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–458PubMedCrossRef
19.
go back to reference Stokes A, Wakano C, Koblan-Huberson M, Adra CN, Fleig A, Turner H (2006) TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal 18:1584–1589PubMedCrossRef Stokes A, Wakano C, Koblan-Huberson M, Adra CN, Fleig A, Turner H (2006) TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal 18:1584–1589PubMedCrossRef
20.
go back to reference Gamberucci A, Giurisato E, Pizzo P, Tassi M, Giunti R, McIntosh DP, Benedetti A (2002) Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products. Biochem J 364:245–254PubMedPubMedCentralCrossRef Gamberucci A, Giurisato E, Pizzo P, Tassi M, Giunti R, McIntosh DP, Benedetti A (2002) Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products. Biochem J 364:245–254PubMedPubMedCentralCrossRef
21.
22.
go back to reference Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179PubMedCrossRef Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179PubMedCrossRef
23.
go back to reference Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S (2009) Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem 284:9733–9741PubMedPubMedCentralCrossRef Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S (2009) Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem 284:9733–9741PubMedPubMedCentralCrossRef
24.
go back to reference Saul S, Stanisz H, Backes CS, Schwarz EC, Hoth M (2014) How ORAI and TRP channels interfere with each other: interaction models and examples from the immune system and the skin. Eur J Pharmacol 739:49–59PubMedCrossRef Saul S, Stanisz H, Backes CS, Schwarz EC, Hoth M (2014) How ORAI and TRP channels interfere with each other: interaction models and examples from the immune system and the skin. Eur J Pharmacol 739:49–59PubMedCrossRef
25.
go back to reference Rao GK, Kaminski NE (2006) Induction of intracellular calcium elevation by Delta9-tetrahydrocannabinol in T cells involves TRPC1 channels. J Leukoc Biol 79:202–213PubMedCrossRef Rao GK, Kaminski NE (2006) Induction of intracellular calcium elevation by Delta9-tetrahydrocannabinol in T cells involves TRPC1 channels. J Leukoc Biol 79:202–213PubMedCrossRef
26.
go back to reference Philipp S, Strauss B, Hirnet D, Wissenbach U, Mery L, Flockerzi V, Hoth M (2003) TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J Biol Chem 278:26629–26638PubMedCrossRef Philipp S, Strauss B, Hirnet D, Wissenbach U, Mery L, Flockerzi V, Hoth M (2003) TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J Biol Chem 278:26629–26638PubMedCrossRef
27.
go back to reference Wang J, Lu ZH, Gabius HJ, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182:4036–4045PubMedCrossRef Wang J, Lu ZH, Gabius HJ, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182:4036–4045PubMedCrossRef
28.
go back to reference Wu G, Lu ZH, Gabius HJ, Ledeen RW, Bleich D (2011) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T-cell suppression. Diabetes 60:2341–2349PubMedPubMedCentralCrossRef Wu G, Lu ZH, Gabius HJ, Ledeen RW, Bleich D (2011) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T-cell suppression. Diabetes 60:2341–2349PubMedPubMedCentralCrossRef
29.
go back to reference Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS (2004) The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry 43:11701–11708PubMedCrossRef Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS (2004) The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry 43:11701–11708PubMedCrossRef
30.
go back to reference Carrillo C, Hichami A, Andreoletti P, Cherkaoui-Malki M, del Mar CM, Abdoul-Azize S, Alonso-Torre SR, Khan NA (2012) Diacylglycerol-containing oleic acid induces increases in [Ca(2+)](i) via TRPC3/6 channels in human T-cells. Biochim Biophys Acta 1821:618–626PubMedCrossRef Carrillo C, Hichami A, Andreoletti P, Cherkaoui-Malki M, del Mar CM, Abdoul-Azize S, Alonso-Torre SR, Khan NA (2012) Diacylglycerol-containing oleic acid induces increases in [Ca(2+)](i) via TRPC3/6 channels in human T-cells. Biochim Biophys Acta 1821:618–626PubMedCrossRef
31.
go back to reference Wu QY, Sun MR, Wu CL, Li Y, Du JJ, Zeng JY, Bi HL, Sun YH (2015) Activation of calcium-sensing receptor increases TRPC3/6 expression in T lymphocyte in sepsis. Mol Immunol 64:18–25PubMedCrossRef Wu QY, Sun MR, Wu CL, Li Y, Du JJ, Zeng JY, Bi HL, Sun YH (2015) Activation of calcium-sensing receptor increases TRPC3/6 expression in T lymphocyte in sepsis. Mol Immunol 64:18–25PubMedCrossRef
32.
go back to reference de Jong PR, Takahashi N, Harris AR, Lee J, Bertin S, Jeffries J, Jung M, Duong J, Triano AI, Lee J, Niv Y, Herdman DS, Taniguchi K, Kim CW, Dong H, Eckmann L, Stanford SM, Bottini N, Corr M, Raz E (2014) Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis. J Clin Invest 124:3793–3806PubMedPubMedCentralCrossRef de Jong PR, Takahashi N, Harris AR, Lee J, Bertin S, Jeffries J, Jung M, Duong J, Triano AI, Lee J, Niv Y, Herdman DS, Taniguchi K, Kim CW, Dong H, Eckmann L, Stanford SM, Bottini N, Corr M, Raz E (2014) Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis. J Clin Invest 124:3793–3806PubMedPubMedCentralCrossRef
33.
go back to reference den Dekker E, Hoenderop JG, Nilius B, Bindels RJ (2003) The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell Calcium 33:497–507CrossRef den Dekker E, Hoenderop JG, Nilius B, Bindels RJ (2003) The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell Calcium 33:497–507CrossRef
34.
go back to reference Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118:917–928PubMedCrossRef Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118:917–928PubMedCrossRef
35.
go back to reference Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785PubMedPubMedCentralCrossRef Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785PubMedPubMedCentralCrossRef
36.
go back to reference Schumacher MA, Moff I, Sudanagunta SP, Levine JD (2000) Molecular cloning of an N-terminal splice variant of the capsaicin receptor. Loss of N-terminal domain suggests functional divergence among capsaicin receptor subtypes. J Biol Chem 275:2756–2762PubMedCrossRef Schumacher MA, Moff I, Sudanagunta SP, Levine JD (2000) Molecular cloning of an N-terminal splice variant of the capsaicin receptor. Loss of N-terminal domain suggests functional divergence among capsaicin receptor subtypes. J Biol Chem 275:2756–2762PubMedCrossRef
37.
38.
go back to reference Saunders CI, Kunde DA, Crawford A, Geraghty DP (2007) Expression of transient receptor potential vanilloid 1 (TRPV1) and 2 (TRPV2) in human peripheral blood. Mol Immunol 44:1429–1435PubMedCrossRef Saunders CI, Kunde DA, Crawford A, Geraghty DP (2007) Expression of transient receptor potential vanilloid 1 (TRPV1) and 2 (TRPV2) in human peripheral blood. Mol Immunol 44:1429–1435PubMedCrossRef
39.
go back to reference Bachiocco V, Bergamaschi R, Spinsanti G, Lima M, Romagnoli R, Sorda G, Aloisi AM (2011) Lymphocyte TRPV 1–4 gene expression and MIF blood levels in a young girl clinically diagnosed with HSAN IV. Clin J Pain 27:631–634PubMedCrossRef Bachiocco V, Bergamaschi R, Spinsanti G, Lima M, Romagnoli R, Sorda G, Aloisi AM (2011) Lymphocyte TRPV 1–4 gene expression and MIF blood levels in a young girl clinically diagnosed with HSAN IV. Clin J Pain 27:631–634PubMedCrossRef
40.
go back to reference Bertin S, Aoki-Nonaka Y, de Jong PR, Nohara LL, Xu H, Stanwood SR, Srikanth S, Lee J, To K, Abramson L, Yu T, Han T, Touma R, Li X, Gonzalez-Navajas JM, Herdman S, Corr M, Fu G, Dong H, Gwack Y, Franco A, Jefferies WA, Raz E (2014) The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4(+) T cells. Nat Immunol 15:1055–1063PubMedPubMedCentralCrossRef Bertin S, Aoki-Nonaka Y, de Jong PR, Nohara LL, Xu H, Stanwood SR, Srikanth S, Lee J, To K, Abramson L, Yu T, Han T, Touma R, Li X, Gonzalez-Navajas JM, Herdman S, Corr M, Fu G, Dong H, Gwack Y, Franco A, Jefferies WA, Raz E (2014) The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4(+) T cells. Nat Immunol 15:1055–1063PubMedPubMedCentralCrossRef
41.
go back to reference Amantini C, Mosca M, Lucciarini R, Perfumi M, Morrone S, Piccoli M, Santoni G (2004) Distinct thymocyte subsets express the vanilloid receptor VR1 that mediates capsaicin-induced apoptotic cell death. Cell Death Differ 11:1342–1356PubMedCrossRef Amantini C, Mosca M, Lucciarini R, Perfumi M, Morrone S, Piccoli M, Santoni G (2004) Distinct thymocyte subsets express the vanilloid receptor VR1 that mediates capsaicin-induced apoptotic cell death. Cell Death Differ 11:1342–1356PubMedCrossRef
42.
go back to reference Farfariello V, Amantini C, Santoni G (2012) Transient receptor potential vanilloid 1 activation induces autophagy in thymocytes through ROS-regulated AMPK and Atg4C pathways. J Leukoc Biol 92:421–423PubMedCrossRef Farfariello V, Amantini C, Santoni G (2012) Transient receptor potential vanilloid 1 activation induces autophagy in thymocytes through ROS-regulated AMPK and Atg4C pathways. J Leukoc Biol 92:421–423PubMedCrossRef
43.
go back to reference Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRef Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRef
44.
go back to reference Macho A, Calzado MA, Munoz-Blanco J, Gomez-Diaz C, Gajate C, Mollinedo F, Navas P, Munoz E (1999) Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ 6:155–156PubMedCrossRef Macho A, Calzado MA, Munoz-Blanco J, Gomez-Diaz C, Gajate C, Mollinedo F, Navas P, Munoz E (1999) Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ 6:155–156PubMedCrossRef
46.
go back to reference Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372PubMedCrossRef Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372PubMedCrossRef
47.
go back to reference Majhi RK, Sahoo SS, Yadav M, Pratheek BM, Chattopadhyay S, Goswami C (2015) Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J 282:2661–2668PubMedCrossRef Majhi RK, Sahoo SS, Yadav M, Pratheek BM, Chattopadhyay S, Goswami C (2015) Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J 282:2661–2668PubMedCrossRef
48.
go back to reference James JT, Karsten S (2006) Methods for identifying T cell activation-modulating compounds James JT, Karsten S (2006) Methods for identifying T cell activation-modulating compounds
49.
go back to reference Pottosin I, Delgado-Enciso I, Bonales-Alatorre E, Nieto-Pescador MG, Moreno-Galindo EG, Dobrovinskaya O (2015) Mechanosensitive Ca(2)(+)-permeable channels in human leukemic cells: pharmacological and molecular evidence for TRPV2. Biochim Biophys Acta 1848:51–59PubMedCrossRef Pottosin I, Delgado-Enciso I, Bonales-Alatorre E, Nieto-Pescador MG, Moreno-Galindo EG, Dobrovinskaya O (2015) Mechanosensitive Ca(2)(+)-permeable channels in human leukemic cells: pharmacological and molecular evidence for TRPV2. Biochim Biophys Acta 1848:51–59PubMedCrossRef
50.
go back to reference Vassilieva IO, Tomilin VN, Marakhova II, Shatrova AN, Negulyaev YA, Semenova SB (2013) Expression of transient receptor potential vanilloid channels TRPV5 and TRPV6 in human blood lymphocytes and Jurkat leukemia T cells. J Membr Biol 246:131–140PubMedCrossRef Vassilieva IO, Tomilin VN, Marakhova II, Shatrova AN, Negulyaev YA, Semenova SB (2013) Expression of transient receptor potential vanilloid channels TRPV5 and TRPV6 in human blood lymphocytes and Jurkat leukemia T cells. J Membr Biol 246:131–140PubMedCrossRef
51.
go back to reference Cui J, Bian JS, Kagan A, McDonald TV (2002) CaT1 contributes to the stores-operated calcium current in Jurkat T-lymphocytes. J Biol Chem 277:47175–47183PubMedCrossRef Cui J, Bian JS, Kagan A, McDonald TV (2002) CaT1 contributes to the stores-operated calcium current in Jurkat T-lymphocytes. J Biol Chem 277:47175–47183PubMedCrossRef
52.
go back to reference Suzuki Y, Kovacs CS, Takanaga H, Peng JB, Landowski CP, Hediger MA (2008) Calcium channel TRPV6 is involved in murine maternal-fetal calcium transport. J Bone Miner Res 23:1249–1256PubMedPubMedCentralCrossRef Suzuki Y, Kovacs CS, Takanaga H, Peng JB, Landowski CP, Hediger MA (2008) Calcium channel TRPV6 is involved in murine maternal-fetal calcium transport. J Bone Miner Res 23:1249–1256PubMedPubMedCentralCrossRef
54.
go back to reference Voets T, Prenen J, Fleig A, Vennekens R, Watanabe H, Hoenderop JG, Bindels RJ, Droogmans G, Penner R, Nilius B (2001) CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J Biol Chem 276:47767–47770PubMed Voets T, Prenen J, Fleig A, Vennekens R, Watanabe H, Hoenderop JG, Bindels RJ, Droogmans G, Penner R, Nilius B (2001) CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J Biol Chem 276:47767–47770PubMed
55.
go back to reference Bodding M, Wissenbach U, Flockerzi V (2002) The recombinant human TRPV6 channel functions as Ca2+ sensor in human embryonic kidney and rat basophilic leukemia cells. J Biol Chem 277:36656–36664PubMedCrossRef Bodding M, Wissenbach U, Flockerzi V (2002) The recombinant human TRPV6 channel functions as Ca2+ sensor in human embryonic kidney and rat basophilic leukemia cells. J Biol Chem 277:36656–36664PubMedCrossRef
56.
go back to reference Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M (2006) TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 39:163–167PubMedCrossRef Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M (2006) TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 39:163–167PubMedCrossRef
57.
go back to reference Tomilin VN, Cherezova AL, Negulyaev YA, Semenova SB (2015) TRPV5/V6 channels mediate Ca influx in Jurkat T cells under the control of extracellular pH. J Cell Biochem. doi:10.1002/jcb.25264 Tomilin VN, Cherezova AL, Negulyaev YA, Semenova SB (2015) TRPV5/V6 channels mediate Ca influx in Jurkat T cells under the control of extracellular pH. J Cell Biochem. doi:10.​1002/​jcb.​25264
58.
go back to reference Charuk JH, Pirraglia CA, Reithmeier RA (1990) Interaction of ruthenium red with Ca2(+)-binding proteins. Anal Biochem 188:123–131PubMedCrossRef Charuk JH, Pirraglia CA, Reithmeier RA (1990) Interaction of ruthenium red with Ca2(+)-binding proteins. Anal Biochem 188:123–131PubMedCrossRef
59.
go back to reference Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279PubMedCrossRef Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279PubMedCrossRef
60.
go back to reference Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330PubMedCrossRef Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330PubMedCrossRef
61.
go back to reference Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV, Mayr GW (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398:70–73PubMedCrossRef Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV, Mayr GW (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398:70–73PubMedCrossRef
62.
go back to reference Beck A, Kolisek M, Bagley LA, Fleig A, Penner R (2006) Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J20:962–964CrossRef Beck A, Kolisek M, Bagley LA, Fleig A, Penner R (2006) Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J20:962–964CrossRef
63.
64.
go back to reference Gasser A, Glassmeier G, Fliegert R, Langhorst MF, Meinke S, Hein D, Kruger S, Weber K, Heiner I, Oppenheimer N, Schwarz JR, Guse AH (2006) Activation of T cell calcium influx by the second messenger ADP-ribose. J Biol Chem 281:2489–2496PubMedCrossRef Gasser A, Glassmeier G, Fliegert R, Langhorst MF, Meinke S, Hein D, Kruger S, Weber K, Heiner I, Oppenheimer N, Schwarz JR, Guse AH (2006) Activation of T cell calcium influx by the second messenger ADP-ribose. J Biol Chem 281:2489–2496PubMedCrossRef
65.
go back to reference Magnone M, Bauer I, Poggi A, Mannino E, Sturla L, Brini M, Zocchi E, De Flora A, Nencioni A, Bruzzone S (2012) NAD+ levels control Ca2+ store replenishment and mitogen-induced increase of cytosolic Ca2+ by cyclic ADP-ribose-dependent TRPM2 channel gating in human T lymphocytes. J Biol Chem 287:21067–21081PubMedPubMedCentralCrossRef Magnone M, Bauer I, Poggi A, Mannino E, Sturla L, Brini M, Zocchi E, De Flora A, Nencioni A, Bruzzone S (2012) NAD+ levels control Ca2+ store replenishment and mitogen-induced increase of cytosolic Ca2+ by cyclic ADP-ribose-dependent TRPM2 channel gating in human T lymphocytes. J Biol Chem 287:21067–21081PubMedPubMedCentralCrossRef
66.
go back to reference Melzer N, Hicking G, Gobel K, Wiendl H (2012) TRPM2 cation channels modulate T cell effector functions and contribute to autoimmune CNS inflammation. PLoS One 7:e47617PubMedPubMedCentralCrossRef Melzer N, Hicking G, Gobel K, Wiendl H (2012) TRPM2 cation channels modulate T cell effector functions and contribute to autoimmune CNS inflammation. PLoS One 7:e47617PubMedPubMedCentralCrossRef
67.
go back to reference Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP (2004) TRPM4 regulates calcium oscillations after T cell activation. Science 306:1374–1377PubMedCrossRef Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP (2004) TRPM4 regulates calcium oscillations after T cell activation. Science 306:1374–1377PubMedCrossRef
68.
go back to reference Weber KS, Hildner K, Murphy KM, Allen PM (2010) Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol 185:2836–2846PubMedPubMedCentralCrossRef Weber KS, Hildner K, Murphy KM, Allen PM (2010) Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol 185:2836–2846PubMedPubMedCentralCrossRef
70.
go back to reference Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322:756–760PubMedPubMedCentralCrossRef Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322:756–760PubMedPubMedCentralCrossRef
71.
go back to reference Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047PubMedCrossRef Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047PubMedCrossRef
72.
go back to reference Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasian Y, Clapham DE (2012) Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell 22:1149–1162PubMedPubMedCentralCrossRef Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasian Y, Clapham DE (2012) Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell 22:1149–1162PubMedPubMedCentralCrossRef
73.
go back to reference Kuras Z, Yun YH, Chimote AA, Neumeier L, Conforti L (2012) KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One 7:e43859PubMedPubMedCentralCrossRef Kuras Z, Yun YH, Chimote AA, Neumeier L, Conforti L (2012) KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One 7:e43859PubMedPubMedCentralCrossRef
74.
go back to reference Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9:1148–1156PubMedPubMedCentralCrossRef Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9:1148–1156PubMedPubMedCentralCrossRef
75.
go back to reference Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11:232–239PubMedPubMedCentralCrossRef Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11:232–239PubMedPubMedCentralCrossRef
76.
go back to reference Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747PubMedPubMedCentralCrossRef Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747PubMedPubMedCentralCrossRef
77.
go back to reference Qian F, Noben-Trauth K (2005) Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). Pflugers Arch 451:277–285PubMedCrossRef Qian F, Noben-Trauth K (2005) Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). Pflugers Arch 451:277–285PubMedCrossRef
78.
go back to reference Venkatachalam K, Wong CO, Zhu MX (2015) The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58:48–56PubMedCrossRef Venkatachalam K, Wong CO, Zhu MX (2015) The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58:48–56PubMedCrossRef
79.
go back to reference Karacsonyi C, Miguel AS, Puertollano R (2007) Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic 8:1404–1414PubMedCrossRef Karacsonyi C, Miguel AS, Puertollano R (2007) Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic 8:1404–1414PubMedCrossRef
81.
go back to reference Song Y, Dayalu R, Matthews SA, Scharenberg AM (2006) TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes. Eur J Cell Biol 85:1253–1264PubMedCrossRef Song Y, Dayalu R, Matthews SA, Scharenberg AM (2006) TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes. Eur J Cell Biol 85:1253–1264PubMedCrossRef
82.
go back to reference Dietrich A, Kalwa H, Gudermann T (2010) TRPC channels in vascular cell function. Thromb Haemost 103:262–270PubMedCrossRef Dietrich A, Kalwa H, Gudermann T (2010) TRPC channels in vascular cell function. Thromb Haemost 103:262–270PubMedCrossRef
83.
go back to reference Rohacs T, Nilius B (2007) Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 455:157–168PubMedCrossRef Rohacs T, Nilius B (2007) Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 455:157–168PubMedCrossRef
84.
go back to reference Hilton JK, Rath P, Helsell CV, Beckstein O, Van Horn WD (2015) Understanding thermosensitive transient receptor potential channels as versatile polymodal cellular sensors. Biochemistry 54:2401–2413PubMedCrossRef Hilton JK, Rath P, Helsell CV, Beckstein O, Van Horn WD (2015) Understanding thermosensitive transient receptor potential channels as versatile polymodal cellular sensors. Biochemistry 54:2401–2413PubMedCrossRef
85.
go back to reference Yao X, Kwan HY, Huang Y (2005) Regulation of TRP channels by phosphorylation. Neurosignals 14:273–280PubMedCrossRef Yao X, Kwan HY, Huang Y (2005) Regulation of TRP channels by phosphorylation. Neurosignals 14:273–280PubMedCrossRef
87.
go back to reference Bertin S, de Jong PR, Jefferies WA, Raz E (2014) Novel immune function for the TRPV1 channel in T lymphocytes. Channels (Austin) 8:479–480CrossRef Bertin S, de Jong PR, Jefferies WA, Raz E (2014) Novel immune function for the TRPV1 channel in T lymphocytes. Channels (Austin) 8:479–480CrossRef
88.
go back to reference Jin X, Morsy N, Winston J, Pasricha PJ, Garrett K, Akbarali HI (2004) Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am J Physiol Cell Physiol 287:C558–C563PubMedCrossRef Jin X, Morsy N, Winston J, Pasricha PJ, Garrett K, Akbarali HI (2004) Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am J Physiol Cell Physiol 287:C558–C563PubMedCrossRef
89.
go back to reference Xu H, Zhao H, Tian W, Yoshida K, Roullet JB, Cohen DM (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J Biol Chem 278:11520–11527PubMedCrossRef Xu H, Zhao H, Tian W, Yoshida K, Roullet JB, Cohen DM (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J Biol Chem 278:11520–11527PubMedCrossRef
90.
go back to reference Sternfeld L, Krause E, Schmid A, Anderie I, Latas A, Al-Shaldi H, Kohl A, Evers K, Hofer HW, Schulz I (2005) Tyrosine phosphatase PTP1B interacts with TRPV6 in vivo and plays a role in TRPV6-mediated calcium influx in HEK293 cells. Cell Signal 17:951–960PubMedCrossRef Sternfeld L, Krause E, Schmid A, Anderie I, Latas A, Al-Shaldi H, Kohl A, Evers K, Hofer HW, Schulz I (2005) Tyrosine phosphatase PTP1B interacts with TRPV6 in vivo and plays a role in TRPV6-mediated calcium influx in HEK293 cells. Cell Signal 17:951–960PubMedCrossRef
91.
go back to reference Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW Jr (2004) Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528PubMedCrossRef Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW Jr (2004) Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528PubMedCrossRef
92.
go back to reference Kawasaki BT, Liao Y, Birnbaumer L (2006) Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels. Proc Natl Acad Sci U S A 103:335–340PubMedPubMedCentralCrossRef Kawasaki BT, Liao Y, Birnbaumer L (2006) Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels. Proc Natl Acad Sci U S A 103:335–340PubMedPubMedCentralCrossRef
93.
go back to reference Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894PubMedCrossRef Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894PubMedCrossRef
94.
go back to reference Zhang W, Tong Q, Conrad K, Wozney J, Cheung JY, Miller BA (2007) Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1. Am J Physiol Cell Physiol 292:C1746–C1758PubMedCrossRef Zhang W, Tong Q, Conrad K, Wozney J, Cheung JY, Miller BA (2007) Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1. Am J Physiol Cell Physiol 292:C1746–C1758PubMedCrossRef
97.
98.
99.
go back to reference Staruschenko A, Jeske NA, Akopian AN (2010) Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J Biol Chem 285:15167–15177PubMedPubMedCentralCrossRef Staruschenko A, Jeske NA, Akopian AN (2010) Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J Biol Chem 285:15167–15177PubMedPubMedCentralCrossRef
100.
go back to reference Sadofsky LR, Sreekrishna KT, Lin Y, Schinaman R, Gorka K, Mantri Y, Haught JC, Huggins TG, Isfort RJ, Bascom CC, Morice AH (2014) Unique responses are observed in transient receptor potential ankyrin 1 and vanilloid 1 (TRPA1 and TRPV1) co-expressing cells. Cells 3:616–626PubMedPubMedCentralCrossRef Sadofsky LR, Sreekrishna KT, Lin Y, Schinaman R, Gorka K, Mantri Y, Haught JC, Huggins TG, Isfort RJ, Bascom CC, Morice AH (2014) Unique responses are observed in transient receptor potential ankyrin 1 and vanilloid 1 (TRPA1 and TRPV1) co-expressing cells. Cells 3:616–626PubMedPubMedCentralCrossRef
101.
go back to reference Fischer MJ, Balasuriya D, Jeggle P, Goetze TA, McNaughton PA, Reeh PW, Edwardson JM (2014) Direct evidence for functional TRPV1/TRPA1 heteromers. Pflugers Arch 466:2229–2241PubMedCrossRef Fischer MJ, Balasuriya D, Jeggle P, Goetze TA, McNaughton PA, Reeh PW, Edwardson JM (2014) Direct evidence for functional TRPV1/TRPA1 heteromers. Pflugers Arch 466:2229–2241PubMedCrossRef
102.
go back to reference Gallo EM, Cante-Barrett K, Crabtree GR (2006) Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 7:25–32PubMedCrossRef Gallo EM, Cante-Barrett K, Crabtree GR (2006) Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 7:25–32PubMedCrossRef
103.
go back to reference Christo SN, Diener KR, Hayball JD (2015) The functional contribution of calcium ion flux heterogeneity in T cells. Immunol Cell Biol 93:694–704PubMedCrossRef Christo SN, Diener KR, Hayball JD (2015) The functional contribution of calcium ion flux heterogeneity in T cells. Immunol Cell Biol 93:694–704PubMedCrossRef
104.
go back to reference Smith JB, Knowlton RP, Agarwal SS (1978) Human lymphocyte responses are enhanced by culture at 40 degrees C. J Immunol 121:691–694PubMed Smith JB, Knowlton RP, Agarwal SS (1978) Human lymphocyte responses are enhanced by culture at 40 degrees C. J Immunol 121:691–694PubMed
105.
go back to reference Hanson DF (1993) Fever and the immune response. The effects of physiological temperatures on primary murine splenic T-cell responses in vitro. J Immunol 151:436–448PubMed Hanson DF (1993) Fever and the immune response. The effects of physiological temperatures on primary murine splenic T-cell responses in vitro. J Immunol 151:436–448PubMed
106.
go back to reference Tournier JN, Hellmann AQ, Lesca G, Jouan A, Drouet E, Mathieu J (2003) Fever-like thermal conditions regulate the activation of maturing dendritic cells. J Leukoc Biol 73:493–501PubMedCrossRef Tournier JN, Hellmann AQ, Lesca G, Jouan A, Drouet E, Mathieu J (2003) Fever-like thermal conditions regulate the activation of maturing dendritic cells. J Leukoc Biol 73:493–501PubMedCrossRef
107.
go back to reference Mace TA, Zhong L, Kilpatrick C, Zynda E, Lee CT, Capitano M, Minderman H, Repasky EA (2011) Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J Leukoc Biol 90:951–962PubMedPubMedCentralCrossRef Mace TA, Zhong L, Kilpatrick C, Zynda E, Lee CT, Capitano M, Minderman H, Repasky EA (2011) Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J Leukoc Biol 90:951–962PubMedPubMedCentralCrossRef
108.
go back to reference Xiao B, Coste B, Mathur J, Patapoutian A (2011) Temperature-dependent STIM1 activation induces Ca(2)+ influx and modulates gene expression. Nat Chem Biol 7:351–358PubMedPubMedCentralCrossRef Xiao B, Coste B, Mathur J, Patapoutian A (2011) Temperature-dependent STIM1 activation induces Ca(2)+ influx and modulates gene expression. Nat Chem Biol 7:351–358PubMedPubMedCentralCrossRef
109.
go back to reference Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565PubMedCrossRef Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565PubMedCrossRef
110.
go back to reference Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Pflugers Arch 460:437–450PubMedCrossRef Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Pflugers Arch 460:437–450PubMedCrossRef
111.
go back to reference Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217PubMedCrossRef Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217PubMedCrossRef
112.
go back to reference Sel S, Rost BR, Yildirim AO, Sel B, Kalwa H, Fehrenbach H, Renz H, Gudermann T, Dietrich A (2008) Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 38:1548–1558PubMedCrossRef Sel S, Rost BR, Yildirim AO, Sel B, Kalwa H, Fehrenbach H, Renz H, Gudermann T, Dietrich A (2008) Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 38:1548–1558PubMedCrossRef
113.
go back to reference Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8:312–320PubMedCrossRef Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8:312–320PubMedCrossRef
114.
go back to reference Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG (2014) Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 171:2593–2607PubMedPubMedCentralCrossRef Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG (2014) Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 171:2593–2607PubMedPubMedCentralCrossRef
115.
116.
go back to reference Zielinska M, Jarmuz A, Wasilewski A, Salaga M, Fichna J (2015) Role of transient receptor potential channels in intestinal inflammation and visceral pain: novel targets in inflammatory bowel diseases. Inflamm Bowel Dis 21:419–427PubMedCrossRef Zielinska M, Jarmuz A, Wasilewski A, Salaga M, Fichna J (2015) Role of transient receptor potential channels in intestinal inflammation and visceral pain: novel targets in inflammatory bowel diseases. Inflamm Bowel Dis 21:419–427PubMedCrossRef
117.
go back to reference Kochukov MY, McNearney TA, Fu Y, Westlund KN (2006) Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am J Physiol Cell Physiol 291:C424–C432PubMedCrossRef Kochukov MY, McNearney TA, Fu Y, Westlund KN (2006) Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am J Physiol Cell Physiol 291:C424–C432PubMedCrossRef
118.
go back to reference Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ, Bahnasi YM, Al-Shawaf E, Porter KE, Jiang LH, Emery P, Sivaprasadarao A, Beech DJ (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72PubMedPubMedCentralCrossRef Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ, Bahnasi YM, Al-Shawaf E, Porter KE, Jiang LH, Emery P, Sivaprasadarao A, Beech DJ (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72PubMedPubMedCentralCrossRef
119.
go back to reference Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Bruck W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18:1805–1811PubMedCrossRef Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Bruck W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18:1805–1811PubMedCrossRef
120.
go back to reference Sulk M, Seeliger S, Aubert J, Schwab VD, Cevikbas F, Rivier M, Nowak P, Voegel JJ, Buddenkotte J, Steinhoff M (2012) Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J Invest Dermatol 132:1253–1262PubMedPubMedCentralCrossRef Sulk M, Seeliger S, Aubert J, Schwab VD, Cevikbas F, Rivier M, Nowak P, Voegel JJ, Buddenkotte J, Steinhoff M (2012) Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J Invest Dermatol 132:1253–1262PubMedPubMedCentralCrossRef
121.
go back to reference Issa F, Schiopu A, Wood KJ (2010) Role of T cells in graft rejection and transplantation tolerance. Expert Rev Clin Immunol 6:155–169PubMedCrossRef Issa F, Schiopu A, Wood KJ (2010) Role of T cells in graft rejection and transplantation tolerance. Expert Rev Clin Immunol 6:155–169PubMedCrossRef
Metadata
Title
Transient Receptor Potential (TRP) channels in T cells
Authors
Samuel Bertin
Eyal Raz
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 3/2016
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-015-0535-z

Other articles of this Issue 3/2016

Seminars in Immunopathology 3/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine