Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 2/2017

01-08-2017 | Review Article

Involvement of cytochrome P450 in cisplatin treatment: implications for toxicity

Authors: Júlia Coelho França Quintanilha, Vanessa Marcilio de Sousa, Marília Berlofa Visacri, Laís Sampaio Amaral, Roseane Maria Maia Santos, Tomás Zambrano, Luis Antonio Salazar, Patricia Moriel

Published in: Cancer Chemotherapy and Pharmacology | Issue 2/2017

Login to get access

Abstract

Purpose

The aim of this study is to evaluate the relationship between the CYP450 enzyme family and cisplatin toxicity.

Methods

This article examined a collection of studies suggesting that CYP450 enzymes may influence cisplatin toxicity. We performed a narrative mini-review.

Results

The studies review showed that CYP450 enzymes have an important role in drug-induced hepatotoxicity and nephrotoxicity, mainly CYP2E1 and CYP4A11. The studies also suggested that the cisplatin and CYP2E1 interaction leads to the generation of reactive oxygen species (ROS) and other oxidants resulting in renal injury; and that ROS generated by both the use of cisplatin and by the CYP2E1 increases tissue damage, induces apoptosis, and causes liver failure.

Conclusions

We observed that there is an important relationship between CYP450 and cisplatin, involving increased toxicity. However, the possible mechanisms described for the involvement of CYP450 enzymes in nephrotoxicity and hepatotoxicity induced by cisplatin need to be confirmed by further studies. Therefore, there is a need for a deeper investigation focusing on cisplatin toxicity mediated by CYP450 enzymes, which would undoubtedly contribute to a better understanding of the mechanisms that have been implicated so far.
Literature
1.
go back to reference Lokich J, Anderson N (1998) Carboplatin versus cisplatin in solid tumors: an analysis of the literature. Ann Oncol 9:13–21CrossRefPubMed Lokich J, Anderson N (1998) Carboplatin versus cisplatin in solid tumors: an analysis of the literature. Ann Oncol 9:13–21CrossRefPubMed
2.
go back to reference Gong P (2006) Modeling conformational dynamics of cisplatin and oxaliplatin adducts with DNA. Dissertation, University of North Carolina Gong P (2006) Modeling conformational dynamics of cisplatin and oxaliplatin adducts with DNA. Dissertation, University of North Carolina
3.
go back to reference O’Dwyer PJ, Stevenson JP, Johnson SW (2000) Clinical pharmacokinetics and administration of established platinum drugs. Drugs 59:19–27CrossRefPubMed O’Dwyer PJ, Stevenson JP, Johnson SW (2000) Clinical pharmacokinetics and administration of established platinum drugs. Drugs 59:19–27CrossRefPubMed
4.
go back to reference Fuertes MA, Alonso C, Pérez JM (2003) Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103:645–662CrossRefPubMed Fuertes MA, Alonso C, Pérez JM (2003) Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103:645–662CrossRefPubMed
5.
go back to reference Safaei R, Howell SB (2005) Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit Rev Oncol Hematol 53:13–23CrossRefPubMed Safaei R, Howell SB (2005) Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit Rev Oncol Hematol 53:13–23CrossRefPubMed
6.
go back to reference Ciarimboli G, Ludwig T, Lang D et al (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484CrossRefPubMedPubMedCentral Ciarimboli G, Ludwig T, Lang D et al (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484CrossRefPubMedPubMedCentral
7.
go back to reference Klein AV, Hambley TW (2009) Platinum drug distribution in cancer cells and tumors. Chem Rev 109:4911–4920CrossRefPubMed Klein AV, Hambley TW (2009) Platinum drug distribution in cancer cells and tumors. Chem Rev 109:4911–4920CrossRefPubMed
8.
go back to reference Cepeda V, Fuertes MA, Castilla J et al (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7:3–18CrossRefPubMed Cepeda V, Fuertes MA, Castilla J et al (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7:3–18CrossRefPubMed
9.
go back to reference Johnson SW, Ferry KV, Hamilton TC (1998) Recent insights into platinum drug resistance in cancer. Drug Resist Updat 1:243–254CrossRefPubMed Johnson SW, Ferry KV, Hamilton TC (1998) Recent insights into platinum drug resistance in cancer. Drug Resist Updat 1:243–254CrossRefPubMed
10.
go back to reference Fuertes MA, Castilla J, Alonso C et al (2003) Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem 10:257–266CrossRefPubMed Fuertes MA, Castilla J, Alonso C et al (2003) Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem 10:257–266CrossRefPubMed
11.
go back to reference Ahmad S (2010) Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 7:543–566CrossRefPubMed Ahmad S (2010) Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 7:543–566CrossRefPubMed
12.
go back to reference Chu E, DeVita VT (2008) Chemotherapeutic and biologic drugs. In: Chu E, McGowan M, Elfiky A et al (eds) Physician’s cancer chemotherapy drug manual 2008. Jones and Bartlett Publishers, Massachusetts, pp 94–98 Chu E, DeVita VT (2008) Chemotherapeutic and biologic drugs. In: Chu E, McGowan M, Elfiky A et al (eds) Physician’s cancer chemotherapy drug manual 2008. Jones and Bartlett Publishers, Massachusetts, pp 94–98
13.
go back to reference Hall MD, Okabe M, Shen DW et al (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535CrossRefPubMed Hall MD, Okabe M, Shen DW et al (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535CrossRefPubMed
14.
go back to reference Hrubisko M, McGown AT, Fox BW (1993) The role of metallothionein, glutathione, glutathione S-transferases and DNA repair in resistance to platinum drugs in a series of L1210 cell lines made resistant to anticancer platinum agents. Biochem Pharmacol 7:253–256CrossRef Hrubisko M, McGown AT, Fox BW (1993) The role of metallothionein, glutathione, glutathione S-transferases and DNA repair in resistance to platinum drugs in a series of L1210 cell lines made resistant to anticancer platinum agents. Biochem Pharmacol 7:253–256CrossRef
15.
go back to reference Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33:9–23CrossRefPubMed Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33:9–23CrossRefPubMed
16.
go back to reference Nakayama K, Miyazaki K, Kanzaki A et al (2001) Expression and cisplatin sensitivity of copper-transporting P-type adenosine triphosphatase (ATP7B) in human solid carcinoma cell lines. Oncol Rep 8:1285–1287PubMed Nakayama K, Miyazaki K, Kanzaki A et al (2001) Expression and cisplatin sensitivity of copper-transporting P-type adenosine triphosphatase (ATP7B) in human solid carcinoma cell lines. Oncol Rep 8:1285–1287PubMed
17.
go back to reference Samimi G, Katano K, Holzer AK et al (2004) Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol 66:25–32CrossRefPubMed Samimi G, Katano K, Holzer AK et al (2004) Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol 66:25–32CrossRefPubMed
18.
go back to reference Blair BG, Larson CA, Safaei R et al (2009) Copper transporter 2 regulates the cellular accumulation and cytotoxicity of cisplatin and carboplatin. Clin Cancer Res 15:4312–4321CrossRefPubMedPubMedCentral Blair BG, Larson CA, Safaei R et al (2009) Copper transporter 2 regulates the cellular accumulation and cytotoxicity of cisplatin and carboplatin. Clin Cancer Res 15:4312–4321CrossRefPubMedPubMedCentral
19.
go back to reference Schrenk D, Baus PR, Ermel N et al (2001) Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett 120:51–57CrossRefPubMed Schrenk D, Baus PR, Ermel N et al (2001) Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett 120:51–57CrossRefPubMed
20.
go back to reference Liedert B, Materna V, Schadendorf D et al (2003) Overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. J Invest Dermatol 121:172–176CrossRefPubMed Liedert B, Materna V, Schadendorf D et al (2003) Overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. J Invest Dermatol 121:172–176CrossRefPubMed
21.
go back to reference Jacobs C, Kalman SM, Tretton M et al (1980) Renal handling of cis-diamminedichloroplatinum(II). Cancer Treat Rep 64:1223–1226PubMed Jacobs C, Kalman SM, Tretton M et al (1980) Renal handling of cis-diamminedichloroplatinum(II). Cancer Treat Rep 64:1223–1226PubMed
23.
go back to reference Go R, Adjel A (1999) Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol 17:409–422CrossRefPubMed Go R, Adjel A (1999) Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol 17:409–422CrossRefPubMed
24.
go back to reference Belt RJ, Himmelstein KJ, Patton TF et al (1979) Pharmacokinetics of non-protein-bound platinum species following administration of cis-dichlorodiammineplatinum(II). Cancer Treat Rep 63:1515–1521PubMed Belt RJ, Himmelstein KJ, Patton TF et al (1979) Pharmacokinetics of non-protein-bound platinum species following administration of cis-dichlorodiammineplatinum(II). Cancer Treat Rep 63:1515–1521PubMed
25.
go back to reference Kuhlmann MK, Burkhardt G, Kohler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12:2478–2480CrossRefPubMed Kuhlmann MK, Burkhardt G, Kohler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12:2478–2480CrossRefPubMed
26.
go back to reference Rosenberg B, Van Camp L, Trosko JE et al (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386CrossRefPubMed Rosenberg B, Van Camp L, Trosko JE et al (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386CrossRefPubMed
27.
go back to reference Cvitkovic E (1998) Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat Rev 24:265–281CrossRefPubMed Cvitkovic E (1998) Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat Rev 24:265–281CrossRefPubMed
28.
go back to reference Iraz M, Ozerol E, Gulec M et al (2006) Protective effect of caffeic acid phenethyl ester (CAPE) administration on cisplatin-induced oxidative damage to liver in rat. Cell Biochem Funct 24:357–361CrossRefPubMed Iraz M, Ozerol E, Gulec M et al (2006) Protective effect of caffeic acid phenethyl ester (CAPE) administration on cisplatin-induced oxidative damage to liver in rat. Cell Biochem Funct 24:357–361CrossRefPubMed
29.
go back to reference Sahu BD, Kuncha M, Sindhura GJ et al (2013) Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine 20:453–460CrossRefPubMed Sahu BD, Kuncha M, Sindhura GJ et al (2013) Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine 20:453–460CrossRefPubMed
30.
go back to reference Santos NA, Catão CS, Martins NM et al (2007) Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 81:495–504CrossRefPubMed Santos NA, Catão CS, Martins NM et al (2007) Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 81:495–504CrossRefPubMed
31.
go back to reference Dehne N, Lautermann J, Petrat F et al (2001) Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals. Toxicol Appl Pharmacol 174:27–34CrossRefPubMed Dehne N, Lautermann J, Petrat F et al (2001) Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals. Toxicol Appl Pharmacol 174:27–34CrossRefPubMed
32.
go back to reference Jiang Y, Guo C, Vasko MR et al (2008) Implications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons. Cancer Res 68:6425–6434CrossRefPubMedPubMedCentral Jiang Y, Guo C, Vasko MR et al (2008) Implications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons. Cancer Res 68:6425–6434CrossRefPubMedPubMedCentral
33.
go back to reference Melli G, Taiana M, Camozzi F et al (2008) Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol 214:276–284CrossRefPubMed Melli G, Taiana M, Camozzi F et al (2008) Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol 214:276–284CrossRefPubMed
34.
go back to reference Santos NA, Bezerra CS, Martins NM et al (2008) Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol 61:145–155CrossRefPubMed Santos NA, Bezerra CS, Martins NM et al (2008) Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol 61:145–155CrossRefPubMed
35.
go back to reference Campbell KCM, Rybak LP, Meech RP et al (1996) D-methionine provides excellent protection from cisplatin ototoxicity in the rat. Hear Res 102:90–98CrossRefPubMed Campbell KCM, Rybak LP, Meech RP et al (1996) D-methionine provides excellent protection from cisplatin ototoxicity in the rat. Hear Res 102:90–98CrossRefPubMed
36.
go back to reference Marullo R, Werner E, Degtyareva N et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 8:e81162CrossRefPubMedPubMedCentral Marullo R, Werner E, Degtyareva N et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 8:e81162CrossRefPubMedPubMedCentral
37.
go back to reference Masuda H, Tanaka T, Takahama U (1994) Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun 203:1175–1180CrossRefPubMed Masuda H, Tanaka T, Takahama U (1994) Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun 203:1175–1180CrossRefPubMed
38.
go back to reference Tsutsumishita Y, Onda T, Okada K et al (1998) Involvement of H2O2 production in cisplatin-induced nephrotoxicity. Biochem Biophys Res Commun 242:310–312CrossRefPubMed Tsutsumishita Y, Onda T, Okada K et al (1998) Involvement of H2O2 production in cisplatin-induced nephrotoxicity. Biochem Biophys Res Commun 242:310–312CrossRefPubMed
39.
go back to reference Martins NM, Santos NA, Curti C et al (2008) Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol 28:337–344CrossRefPubMed Martins NM, Santos NA, Curti C et al (2008) Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol 28:337–344CrossRefPubMed
40.
go back to reference Furukawa M, Nishimura M, Ogino D et al (2004) Cytochrome p450 gene expression levels in peripheral blood mononuclear cells in comparison with the liver. Cancer Sci 95:520–529CrossRefPubMed Furukawa M, Nishimura M, Ogino D et al (2004) Cytochrome p450 gene expression levels in peripheral blood mononuclear cells in comparison with the liver. Cancer Sci 95:520–529CrossRefPubMed
41.
go back to reference Song BJ, Veech RL, Saenger P (1990) Cytochrome P450IIE1 is elevated in lymphocytes from poorly controlled insulin-dependent diabetics. J Clin Endocrinol Metab 71:1036–1040CrossRefPubMed Song BJ, Veech RL, Saenger P (1990) Cytochrome P450IIE1 is elevated in lymphocytes from poorly controlled insulin-dependent diabetics. J Clin Endocrinol Metab 71:1036–1040CrossRefPubMed
42.
go back to reference Meyer RP, Gehlhaus M, Knoth R et al (2007) Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab 8:297–306CrossRefPubMed Meyer RP, Gehlhaus M, Knoth R et al (2007) Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab 8:297–306CrossRefPubMed
43.
go back to reference Tanaka E (1998) Clinically important pharmacokinetic drug–drug interactions: role of cytochrome P450 enzymes. J Clin Pharm Ther 23:403–416CrossRefPubMed Tanaka E (1998) Clinically important pharmacokinetic drug–drug interactions: role of cytochrome P450 enzymes. J Clin Pharm Ther 23:403–416CrossRefPubMed
44.
go back to reference Schenkman JB, Gibson GG (1983) Status of the cytochrome P450 cycle. In: Lamble JW (ed) Drug metabolism and distribution. Elsevier Biomedical Press, Amsterdam, pp 7–11 Schenkman JB, Gibson GG (1983) Status of the cytochrome P450 cycle. In: Lamble JW (ed) Drug metabolism and distribution. Elsevier Biomedical Press, Amsterdam, pp 7–11
45.
go back to reference Jaeschke H, Gores GJ, Cederbaum AI et al (2002) Mechanisms of hepatotoxicity. Toxicol Sci 65:166–176CrossRefPubMed Jaeschke H, Gores GJ, Cederbaum AI et al (2002) Mechanisms of hepatotoxicity. Toxicol Sci 65:166–176CrossRefPubMed
46.
go back to reference Lieber CS (1997) Cytochrome P450 2E1: its physiological and pathological role. Physiol Rev 77:517–544PubMed Lieber CS (1997) Cytochrome P450 2E1: its physiological and pathological role. Physiol Rev 77:517–544PubMed
47.
go back to reference Hartman JH, Miller GP, Meyer JN (2017) Toxicological implications of mitochondrial localization of CYP2E1. Toxicol Res 6:273–289CrossRef Hartman JH, Miller GP, Meyer JN (2017) Toxicological implications of mitochondrial localization of CYP2E1. Toxicol Res 6:273–289CrossRef
48.
go back to reference Castillo T, Koop DR, Kamimura S et al (1992) Role of cytochrome P-450 2E1 in ethanol-, carbon tetrachloride and iron-dependent microsomal lipid peroxidation. Hepatology 16:992–996CrossRefPubMed Castillo T, Koop DR, Kamimura S et al (1992) Role of cytochrome P-450 2E1 in ethanol-, carbon tetrachloride and iron-dependent microsomal lipid peroxidation. Hepatology 16:992–996CrossRefPubMed
49.
go back to reference Dai Y, Rashba-Step J, Cederbaum AI (1993) Stable expression of human cytochrome P4502E1 in HepG2 cells: characterization of catalytic activities and production of reactive oxygen intermediates. Biochemistry 32:6928–6937CrossRefPubMed Dai Y, Rashba-Step J, Cederbaum AI (1993) Stable expression of human cytochrome P4502E1 in HepG2 cells: characterization of catalytic activities and production of reactive oxygen intermediates. Biochemistry 32:6928–6937CrossRefPubMed
50.
go back to reference Sakurai K, Cederbaum AI (1998) Oxidative stress and cytotoxicity induced by ferric-nitrilotriacetate in HepG2 cells that express cytochrome P450 2E1. Mol Pharmacol 54:1024–1035PubMed Sakurai K, Cederbaum AI (1998) Oxidative stress and cytotoxicity induced by ferric-nitrilotriacetate in HepG2 cells that express cytochrome P450 2E1. Mol Pharmacol 54:1024–1035PubMed
51.
go back to reference Wang X, Lu Y, Cederbaum AI (2005) Induction of cytochrome P450 2E1 increases hepatotoxicity caused by Fas agonistic Jo2 antibody in mice. Hepatology 42:400–410CrossRefPubMed Wang X, Lu Y, Cederbaum AI (2005) Induction of cytochrome P450 2E1 increases hepatotoxicity caused by Fas agonistic Jo2 antibody in mice. Hepatology 42:400–410CrossRefPubMed
52.
go back to reference Lu Y, Wang X, Cederbaum AI (2005) Lipopolysaccharide-induced liver injury in rats treated with the CYP2E1 inducer pyrazole. Am J Physiol Gastrointest Liver Physiol 289:G308–G319CrossRefPubMed Lu Y, Wang X, Cederbaum AI (2005) Lipopolysaccharide-induced liver injury in rats treated with the CYP2E1 inducer pyrazole. Am J Physiol Gastrointest Liver Physiol 289:G308–G319CrossRefPubMed
53.
go back to reference Pellinen P, Honkakoski P, Stenbäck F et al (1994) Cocaine N-demethylation and the metabolism-related hepatotoxicity can be prevented by cytochrome P450 3A inhibitors. Eur J Pharmacol 270:35–43PubMed Pellinen P, Honkakoski P, Stenbäck F et al (1994) Cocaine N-demethylation and the metabolism-related hepatotoxicity can be prevented by cytochrome P450 3A inhibitors. Eur J Pharmacol 270:35–43PubMed
54.
go back to reference Cummings BS, Zangar RC, Novak RF et al (1999) Cellular distribution of cytochromes P-450 in the rat kidney. Drug Metab Dispos 27:542–548PubMed Cummings BS, Zangar RC, Novak RF et al (1999) Cellular distribution of cytochromes P-450 in the rat kidney. Drug Metab Dispos 27:542–548PubMed
55.
go back to reference Knights KM, Rowland A, Miners JO (2013) Renal drug metabolism in humans: the potential for drug–endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 76:587–602PubMedPubMedCentral Knights KM, Rowland A, Miners JO (2013) Renal drug metabolism in humans: the potential for drug–endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 76:587–602PubMedPubMedCentral
56.
go back to reference Anders MW, Dekant W (1993) Renal xenobiotic metabolism: role in bioactivation of nephrotoxic xenobiotics. In: Anders MW, Dekant W, Henschler D et al (eds) Renal disposition and nephrotoxicity of xenobiotics. Academic, San Diego, pp 155–183 Anders MW, Dekant W (1993) Renal xenobiotic metabolism: role in bioactivation of nephrotoxic xenobiotics. In: Anders MW, Dekant W, Henschler D et al (eds) Renal disposition and nephrotoxicity of xenobiotics. Academic, San Diego, pp 155–183
57.
go back to reference Ohkawa H, Hisada Y, Fujiwara N et al (1974) Metabolism of N-(3′,5′-dichlorophenyl) succinimide in rats and dogs. Agric Biol Chem 38:1359–1369 Ohkawa H, Hisada Y, Fujiwara N et al (1974) Metabolism of N-(3′,5′-dichlorophenyl) succinimide in rats and dogs. Agric Biol Chem 38:1359–1369
58.
go back to reference Griffin RJ, Rutt DB, Henesey CM et al (1996) In vitro metabolism of the nephrotoxicant A/-(3,5-dichlorophenyl) succinimide in the Fischer 344 rat and New Zealand white rabbit. Xenobiotica 26:369–380CrossRefPubMed Griffin RJ, Rutt DB, Henesey CM et al (1996) In vitro metabolism of the nephrotoxicant A/-(3,5-dichlorophenyl) succinimide in the Fischer 344 rat and New Zealand white rabbit. Xenobiotica 26:369–380CrossRefPubMed
59.
go back to reference Liu S, Yao Y, Lu S et al (2013) The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: utility of renal specific P450 reductase knockout mouse models. Toxicol Appl Pharmacol 272:230–237CrossRefPubMedPubMedCentral Liu S, Yao Y, Lu S et al (2013) The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: utility of renal specific P450 reductase knockout mouse models. Toxicol Appl Pharmacol 272:230–237CrossRefPubMedPubMedCentral
60.
go back to reference Nyarko AK, Kellner-Weibel GL, Harvison PJ (1997) Cytochrome P450-mediated metabolism and nephrotoxicity of N-(3,5-dichlorophenyl) succinimide in Fischer 344 rats. Fundam Appl Toxicol 37:117–124CrossRefPubMed Nyarko AK, Kellner-Weibel GL, Harvison PJ (1997) Cytochrome P450-mediated metabolism and nephrotoxicity of N-(3,5-dichlorophenyl) succinimide in Fischer 344 rats. Fundam Appl Toxicol 37:117–124CrossRefPubMed
61.
go back to reference Smith JH, Hook JB (1984) Mechanism of chloroform nephrotoxicity. III. Renal and hepatic microsomal metabolism of chloroform in mice. Toxicol Appl Pharmacol 73:511–524CrossRefPubMed Smith JH, Hook JB (1984) Mechanism of chloroform nephrotoxicity. III. Renal and hepatic microsomal metabolism of chloroform in mice. Toxicol Appl Pharmacol 73:511–524CrossRefPubMed
62.
go back to reference Constant AA, Sprankle CS, Peters JM et al (1999) Metabolism of chloroform by cytochrome P450 2E1 is required for induction of toxicity in the liver, kidney, and nose of male mice. Toxicol Appl Pharmacol 160:120–126CrossRef Constant AA, Sprankle CS, Peters JM et al (1999) Metabolism of chloroform by cytochrome P450 2E1 is required for induction of toxicity in the liver, kidney, and nose of male mice. Toxicol Appl Pharmacol 160:120–126CrossRef
63.
go back to reference Mitchell JR, McMurtry RJ, Statham CN et al (1977) Molecular basis for several drug-induced nephropathies. Am J Med 62:518–526CrossRefPubMed Mitchell JR, McMurtry RJ, Statham CN et al (1977) Molecular basis for several drug-induced nephropathies. Am J Med 62:518–526CrossRefPubMed
64.
go back to reference Scripture CD, Sparreboom A, Figg WD (2005) Modulation of cytochrome P450 activity: implications for cancer therapy. Lancet Oncol 6:780–789CrossRefPubMed Scripture CD, Sparreboom A, Figg WD (2005) Modulation of cytochrome P450 activity: implications for cancer therapy. Lancet Oncol 6:780–789CrossRefPubMed
65.
go back to reference Li J, Li D, Tie C et al (2015) Cisplatin-mediated cytotoxicity through inducing CYP4A11 expression in human renal tubular epithelial cells. J Toxicol Sci 40:895–900CrossRefPubMed Li J, Li D, Tie C et al (2015) Cisplatin-mediated cytotoxicity through inducing CYP4A11 expression in human renal tubular epithelial cells. J Toxicol Sci 40:895–900CrossRefPubMed
66.
go back to reference Masubuchi Y, Kawasaki M, Horie T (2006) Down-regulation of hepatic cytochrome P450 enzymes associated with cisplatin-induced acute renal failure in male rats. Arch Toxicol 80:347–353CrossRefPubMed Masubuchi Y, Kawasaki M, Horie T (2006) Down-regulation of hepatic cytochrome P450 enzymes associated with cisplatin-induced acute renal failure in male rats. Arch Toxicol 80:347–353CrossRefPubMed
67.
go back to reference Lu Y, Cederbaum AI (2006) Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol Sci 89:515–523CrossRefPubMed Lu Y, Cederbaum AI (2006) Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol Sci 89:515–523CrossRefPubMed
68.
go back to reference Liu H, Baliga R (2003) Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int 63:1687–1696CrossRefPubMed Liu H, Baliga R (2003) Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int 63:1687–1696CrossRefPubMed
69.
go back to reference Liu H, Baliga M, Baliga R (2002) Effect of cytochrome P450 2E1 inhibitors on cisplatin-induced cytotoxicity to renal proximal tubular epithelial cells. Anticancer Res 22:863–868PubMed Liu H, Baliga M, Baliga R (2002) Effect of cytochrome P450 2E1 inhibitors on cisplatin-induced cytotoxicity to renal proximal tubular epithelial cells. Anticancer Res 22:863–868PubMed
70.
go back to reference Baliga R, Zhang Z, Baliga M et al (1998) Role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity. Kidney Int 54:1562–1569CrossRefPubMed Baliga R, Zhang Z, Baliga M et al (1998) Role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity. Kidney Int 54:1562–1569CrossRefPubMed
71.
go back to reference Caro AA, Cederbaum AI (2003) Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol 44:27–42CrossRef Caro AA, Cederbaum AI (2003) Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol 44:27–42CrossRef
72.
go back to reference Czekaj P, Wiaderkiewiez A, Florek E et al (2005) Tobacco smoke-dependent changes in cytochrome P450 1A1, 1A2, and 2E1 protein expressions in fetuses, newborns, pregnant rats, and human placenta. Arch Toxicol 79:13–24CrossRefPubMed Czekaj P, Wiaderkiewiez A, Florek E et al (2005) Tobacco smoke-dependent changes in cytochrome P450 1A1, 1A2, and 2E1 protein expressions in fetuses, newborns, pregnant rats, and human placenta. Arch Toxicol 79:13–24CrossRefPubMed
73.
go back to reference Ingelman-Sundberg M, Oscarson M, Daly AK et al (2001) Human cytochrome P-450 (CYP) genes a web page for the nomenclature of alleles. Cancer Epidemiol Biomarkers Prev 10:1307–1308PubMed Ingelman-Sundberg M, Oscarson M, Daly AK et al (2001) Human cytochrome P-450 (CYP) genes a web page for the nomenclature of alleles. Cancer Epidemiol Biomarkers Prev 10:1307–1308PubMed
74.
go back to reference Hayashi S, Watanabe J, Kawajiri K (1991) Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIEI gene. J Biochem 110:559–565CrossRefPubMed Hayashi S, Watanabe J, Kawajiri K (1991) Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIEI gene. J Biochem 110:559–565CrossRefPubMed
75.
go back to reference Watanabe J, Hayashi S, Sawajiri K (1994) Different regulation and expression of the human CYP2E1 gene due to the RsaI polymorphism in the 5′-flanking region. J Biochem 116:321–326CrossRefPubMed Watanabe J, Hayashi S, Sawajiri K (1994) Different regulation and expression of the human CYP2E1 gene due to the RsaI polymorphism in the 5′-flanking region. J Biochem 116:321–326CrossRefPubMed
76.
go back to reference Nomura F, Itoga S, Uchimoto T et al (2003) Transcriptional activity of the tandem repeat polymorphism in the 5′-flanking region of the human CYP2E1 gene. Alcohol Clin Exp Res 27:42S–46SCrossRefPubMed Nomura F, Itoga S, Uchimoto T et al (2003) Transcriptional activity of the tandem repeat polymorphism in the 5′-flanking region of the human CYP2E1 gene. Alcohol Clin Exp Res 27:42S–46SCrossRefPubMed
77.
go back to reference Uematsu F, Kikuchi H, Motomiya M et al (1991) Association between restriction fragment length polymorphism of the human cytochrome P450IIEI gene and susceptibility to lung cancer. Jpn J Cancer Res 82:254–256CrossRefPubMed Uematsu F, Kikuchi H, Motomiya M et al (1991) Association between restriction fragment length polymorphism of the human cytochrome P450IIEI gene and susceptibility to lung cancer. Jpn J Cancer Res 82:254–256CrossRefPubMed
78.
go back to reference Khrunin AV, Moisseev A, Gorbunova V et al (2010) Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J 10:54–61CrossRefPubMed Khrunin AV, Moisseev A, Gorbunova V et al (2010) Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J 10:54–61CrossRefPubMed
Metadata
Title
Involvement of cytochrome P450 in cisplatin treatment: implications for toxicity
Authors
Júlia Coelho França Quintanilha
Vanessa Marcilio de Sousa
Marília Berlofa Visacri
Laís Sampaio Amaral
Roseane Maria Maia Santos
Tomás Zambrano
Luis Antonio Salazar
Patricia Moriel
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 2/2017
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-017-3358-x

Other articles of this Issue 2/2017

Cancer Chemotherapy and Pharmacology 2/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine