Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 1/2016

Open Access 01-07-2016 | Original Article

Everolimus pharmacokinetics and its exposure–toxicity relationship in patients with thyroid cancer

Authors: D. de Wit, T. C. Schneider, D. J. A. R. Moes, C. F. M. Roozen, J. den Hartigh, H. Gelderblom, H. J. Guchelaar, J. J. van der Hoeven, T. P. Links, E. Kapiteijn, N. P. van Erp

Published in: Cancer Chemotherapy and Pharmacology | Issue 1/2016

Login to get access

Abstract

Background

Everolimus is a mTOR inhibitor used for the treatment of different solid malignancies. Many patients treated with the registered fixed 10 mg dose once daily are in need of dose interruptions, reductions or treatment discontinuation due to severe adverse events. This study determined the correlation between systemic everolimus exposure and toxicity. Additionally, the effect of different covariates on everolimus pharmacokinetics (PK) was explored.

Methods

Forty-two patients with advanced thyroid carcinoma were treated with 10 mg everolimus once daily. Serial pharmacokinetic sampling was performed on days 1 and 15. Subsequently, a population PK model was developed using NONMEM to estimate individual PK values used for analysis of an exposure–toxicity relationship. Furthermore, this model was used to investigate the influence of patient characteristics and genetic polymorphisms in genes coding for enzymes relevant in everolimus PK.

Results

Patients who required a dose reduction (n = 18) due to toxicity at any time during treatment had significant higher everolimus exposures [mean AUC0–24 (SD) 600 (274) vs. 395 (129) µg h/L, P = 0.008] than patients without a dose reduction (n = 22). A significant association between everolimus exposure and stomatitis was found in the four-level ordered logistic regression analysis (P = 0.047). The presence of at least one TTT haplotype in the ABCB1 gene was associated with a 21 % decrease in everolimus exposure.

Conclusion

The current study showed that dose reductions and everolimus-induced stomatitis were strongly associated with systemic everolimus drug exposure in patients with cancer. Our findings confirm observations from another study in patients with cancer and show us that everolimus is a good candidate for individualized dosing in patients with cancer.

ClinicalTrial.gov number

NCT01118065.
Appendix
Available only for authorised users
Literature
2.
go back to reference Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529CrossRefPubMed Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529CrossRefPubMed
3.
go back to reference Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456CrossRefPubMed Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456CrossRefPubMed
6.
go back to reference Aapro M, Andre F, Blackwell K et al (2014) Adverse event management in patients with advanced cancer receiving oral everolimus: focus on breast cancer. Ann Oncol 25:763–773CrossRefPubMed Aapro M, Andre F, Blackwell K et al (2014) Adverse event management in patients with advanced cancer receiving oral everolimus: focus on breast cancer. Ann Oncol 25:763–773CrossRefPubMed
7.
go back to reference Moes DJ, Press RR, den Hartigh J et al (2012) Population pharmacokinetics and pharmacogenetics of everolimus in renal transplant patients. Clin Pharmacokinet 51:467–480CrossRefPubMed Moes DJ, Press RR, den Hartigh J et al (2012) Population pharmacokinetics and pharmacogenetics of everolimus in renal transplant patients. Clin Pharmacokinet 51:467–480CrossRefPubMed
8.
go back to reference O’Donnell A, Faivre S, Burris HA III et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26:1588–1595CrossRefPubMed O’Donnell A, Faivre S, Burris HA III et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26:1588–1595CrossRefPubMed
9.
go back to reference European Medicine Agency (EMA) (2011) Guideline on bioanalytical method validation European Medicine Agency (EMA) (2011) Guideline on bioanalytical method validation
10.
go back to reference Kirchner GI, Meier-Wiedenbach I, Manns MP (2004) Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 43:83–95CrossRefPubMed Kirchner GI, Meier-Wiedenbach I, Manns MP (2004) Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 43:83–95CrossRefPubMed
11.
go back to reference Istrate MA, Nussler AK, Eichelbaum M et al (2010) Regulation of CYP3A4 by pregnane X receptor: the role of nuclear receptors competing for response element binding. Biochem Biophys Res Commun 393:688–693CrossRefPubMed Istrate MA, Nussler AK, Eichelbaum M et al (2010) Regulation of CYP3A4 by pregnane X receptor: the role of nuclear receptors competing for response element binding. Biochem Biophys Res Commun 393:688–693CrossRefPubMed
12.
go back to reference Anderson BJ, Holford NH (2009) Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 24:25–36CrossRefPubMed Anderson BJ, Holford NH (2009) Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 24:25–36CrossRefPubMed
13.
go back to reference Ravaud A, Urva SR, Grosch K et al (2014) Relationship between everolimus exposure and safety and efficacy: meta-analysis of clinical trials in oncology. Eur J Cancer 50:486–495CrossRefPubMed Ravaud A, Urva SR, Grosch K et al (2014) Relationship between everolimus exposure and safety and efficacy: meta-analysis of clinical trials in oncology. Eur J Cancer 50:486–495CrossRefPubMed
14.
go back to reference Tanaka C, O’Reilly T, Kovarik JM et al (2008) Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol 26:1596–1602PubMed Tanaka C, O’Reilly T, Kovarik JM et al (2008) Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol 26:1596–1602PubMed
15.
go back to reference Tabernero J, Rojo F, Calvo E et al (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26:1603–1610CrossRefPubMed Tabernero J, Rojo F, Calvo E et al (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26:1603–1610CrossRefPubMed
16.
go back to reference de Wit D, Guchelaar HJ, den Hartigh J et al (2015) Individualized dosing of tyrosine kinase inhibitors: are we there yet? Drug Discov Today 20:18–36CrossRefPubMed de Wit D, Guchelaar HJ, den Hartigh J et al (2015) Individualized dosing of tyrosine kinase inhibitors: are we there yet? Drug Discov Today 20:18–36CrossRefPubMed
17.
go back to reference Yu H, Steeghs N, Nijenhuis CM et al (2014) Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet 53:305–325CrossRefPubMed Yu H, Steeghs N, Nijenhuis CM et al (2014) Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet 53:305–325CrossRefPubMed
18.
go back to reference Lankheet NA, Kloth JS, Gadellaa-van Hooijdonk CG et al (2014) Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer 110:2441–2449CrossRefPubMedPubMedCentral Lankheet NA, Kloth JS, Gadellaa-van Hooijdonk CG et al (2014) Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer 110:2441–2449CrossRefPubMedPubMedCentral
19.
go back to reference Verheijen R, Bins S, Gadellaa-van Hooijdonk CG et al (2014) Individualized pharmacokinetically-guided dosing of pazopanib: a feasibility study in cancer patients. In: ESMO meeting 2014; abstract no. 7651 Verheijen R, Bins S, Gadellaa-van Hooijdonk CG et al (2014) Individualized pharmacokinetically-guided dosing of pazopanib: a feasibility study in cancer patients. In: ESMO meeting 2014; abstract no. 7651
20.
go back to reference Kim RB, Leake BF, Choo EF et al (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 70:189–199CrossRefPubMed Kim RB, Leake BF, Choo EF et al (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 70:189–199CrossRefPubMed
21.
go back to reference Hung CC, Tai JJ, Lin CJ et al (2005) Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics 6:411–417CrossRefPubMed Hung CC, Tai JJ, Lin CJ et al (2005) Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics 6:411–417CrossRefPubMed
22.
go back to reference Wasilewska A, Zalewski G, Chyczewski L et al (2007) MDR-1 gene polymorphisms and clinical course of steroid-responsive nephrotic syndrome in children. Pediatr Nephrol 22:44–51CrossRefPubMed Wasilewska A, Zalewski G, Chyczewski L et al (2007) MDR-1 gene polymorphisms and clinical course of steroid-responsive nephrotic syndrome in children. Pediatr Nephrol 22:44–51CrossRefPubMed
23.
go back to reference van Erp NP, Eechoute K, van der Veldt AAM et al (2009) Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 27:4406–4412CrossRefPubMed van Erp NP, Eechoute K, van der Veldt AAM et al (2009) Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 27:4406–4412CrossRefPubMed
24.
go back to reference Aarnoudse AJ, Dieleman JP, Visser LE et al (2008) Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration. Pharmacogenet Genomics 18:299–305CrossRefPubMed Aarnoudse AJ, Dieleman JP, Visser LE et al (2008) Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration. Pharmacogenet Genomics 18:299–305CrossRefPubMed
25.
go back to reference Budde K, Fritsche L, Waiser J et al (2005) Pharmacokinetics of the immunosuppressant everolimus in maintenance renal transplant patients. Eur J Med Res 10:169–174PubMed Budde K, Fritsche L, Waiser J et al (2005) Pharmacokinetics of the immunosuppressant everolimus in maintenance renal transplant patients. Eur J Med Res 10:169–174PubMed
27.
go back to reference Thiery-Vuillemin A, Mouillet G, Nguyen Tan HT et al (2014) Impact of everolimus blood concentration on its anti-cancer activity in patients with metastatic renal cell carcinoma. Cancer Chemother Pharmacol 73:999–1007CrossRefPubMed Thiery-Vuillemin A, Mouillet G, Nguyen Tan HT et al (2014) Impact of everolimus blood concentration on its anti-cancer activity in patients with metastatic renal cell carcinoma. Cancer Chemother Pharmacol 73:999–1007CrossRefPubMed
Metadata
Title
Everolimus pharmacokinetics and its exposure–toxicity relationship in patients with thyroid cancer
Authors
D. de Wit
T. C. Schneider
D. J. A. R. Moes
C. F. M. Roozen
J. den Hartigh
H. Gelderblom
H. J. Guchelaar
J. J. van der Hoeven
T. P. Links
E. Kapiteijn
N. P. van Erp
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 1/2016
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-016-3050-6

Other articles of this Issue 1/2016

Cancer Chemotherapy and Pharmacology 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine