Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 5/2013

01-05-2013 | Original Article

Physiologically based pharmacokinetic models for everolimus and sorafenib in mice

Authors: Dipti K. Pawaskar, Robert M. Straubinger, Gerald J. Fetterly, Bonnie H. Hylander, Elizabeth A. Repasky, Wen W. Ma, William J. Jusko

Published in: Cancer Chemotherapy and Pharmacology | Issue 5/2013

Login to get access

Abstract

Purpose

Everolimus is a mammalian target of rapamycin (mTOR) inhibitor approved as an immunosuppressant and for second-line therapy of hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). Sorafenib is a multikinase inhibitor used as first-line therapy in HCC and RCC. This study assessed the pharmacokinetics (PK) of everolimus and sorafenib alone and in combination in plasma and tissues, developed physiologically based pharmacokinetic (PBPK) models in mice, and assessed the possibility of PK drug interactions.

Methods

Single and multiple oral doses of everolimus and sorafenib were administered alone and in combination in immunocompetent male mice and to severe combined immune-deficient (SCID) mice bearing low-passage, patient-derived pancreatic adenocarcinoma in seven different studies. Plasma and tissue samples including tumor were collected over a 24-h period and analyzed by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Distribution of everolimus and sorafenib to the brain, muscle, adipose, lungs, kidneys, pancreas, spleen, liver, GI, and tumor was modeled as perfusion rate-limited, and all data from the diverse studies were fitted simultaneously using a population approach.

Results

PBPK models were developed for everolimus and sorafenib. PBPK analysis showed that the two drugs in combination had the same PK as each drug given alone. A twofold increase in sorafenib dose increased tumor exposure tenfold, thus suggesting involvement of transporters in tumor deposition of sorafenib.

Conclusions

The developed PBPK models suggested the absence of PK interaction between the two drugs in mice. These studies provide the basis for pharmacodynamic evaluation of these drugs in patient-derived primary pancreatic adenocarcinomas explants.
Appendix
Available only for authorised users
Literature
2.
go back to reference Piguet AC, Saar B, Hlushchuk R, St-Pierre MV, McSheehy PM, Radojevic V, Afthinos M, Terracciano L, Djonov V, Dufour JF (2011) Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther 10:1007–1017PubMedCrossRef Piguet AC, Saar B, Hlushchuk R, St-Pierre MV, McSheehy PM, Radojevic V, Afthinos M, Terracciano L, Djonov V, Dufour JF (2011) Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther 10:1007–1017PubMedCrossRef
3.
go back to reference Rubio-Viqueira B, Hidalgo M (2006) Targeting mTOR for cancer treatment. Curr Opin Investig Drugs 7:501–512PubMed Rubio-Viqueira B, Hidalgo M (2006) Targeting mTOR for cancer treatment. Curr Opin Investig Drugs 7:501–512PubMed
4.
go back to reference Agarwal S, Sane R, Ohlfest JR, Elmquist WF (2011) The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 336:223–233PubMedCrossRef Agarwal S, Sane R, Ohlfest JR, Elmquist WF (2011) The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 336:223–233PubMedCrossRef
5.
go back to reference Harzstark AL, Small EJ, Weinberg VK, Sun J, Ryan CJ, Lin AM, Fong L, Brocks DR, Rosenberg JE (2011) A phase 1 study of everolimus and sorafenib for metastatic clear cell renal cell carcinoma. Cancer 117:4194–4200PubMedCrossRef Harzstark AL, Small EJ, Weinberg VK, Sun J, Ryan CJ, Lin AM, Fong L, Brocks DR, Rosenberg JE (2011) A phase 1 study of everolimus and sorafenib for metastatic clear cell renal cell carcinoma. Cancer 117:4194–4200PubMedCrossRef
6.
go back to reference McKeage K, Wagstaff AJ (2007) Sorafenib: in advanced renal cancer. Drugs 67:475–483 discussion 484–5PubMedCrossRef McKeage K, Wagstaff AJ (2007) Sorafenib: in advanced renal cancer. Drugs 67:475–483 discussion 484–5PubMedCrossRef
7.
go back to reference (2007) Nexavar Tablet prescribing information (2007) Nexavar Tablet prescribing information
9.
go back to reference Komar G, Kauhanen S, Liukko K, Seppanen M, Kajander S, Ovaska J, Nuutila P, Minn H (2009) Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res 15:5511–5517PubMedCrossRef Komar G, Kauhanen S, Liukko K, Seppanen M, Kajander S, Ovaska J, Nuutila P, Minn H (2009) Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res 15:5511–5517PubMedCrossRef
10.
go back to reference Gjedde SB, Gjedde A (1980) Organ blood flow rates and cardiac output of the BALB/c mouse. Comp Biochem Physiol A Physiol 67:5 Gjedde SB, Gjedde A (1980) Organ blood flow rates and cardiac output of the BALB/c mouse. Comp Biochem Physiol A Physiol 67:5
11.
go back to reference Mager DE, Jusko WJ (2001) Pharmacodynamic modeling of time-dependent transduction systems. Clin Pharmacol Ther 70:210–216PubMedCrossRef Mager DE, Jusko WJ (2001) Pharmacodynamic modeling of time-dependent transduction systems. Clin Pharmacol Ther 70:210–216PubMedCrossRef
12.
go back to reference Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484PubMed Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484PubMed
13.
go back to reference Leighton JK, Saber H, Lee H (2009) Pharmacology review-Everolimus. Center for Drug Evaluation and Research, Rockville Leighton JK, Saber H, Lee H (2009) Pharmacology review-Everolimus. Center for Drug Evaluation and Research, Rockville
14.
go back to reference O’Reilly T, McSheehy PM, Kawai R, Kretz O, McMahon L, Brueggen J, Bruelisauer A, Gschwind HP, Allegrini PR, Lane HA (2010) Comparative pharmacokinetics of RAD001 (everolimus) in normal and tumor-bearing rodents. Cancer Chemother Pharmacol 65:625–639PubMedCrossRef O’Reilly T, McSheehy PM, Kawai R, Kretz O, McMahon L, Brueggen J, Bruelisauer A, Gschwind HP, Allegrini PR, Lane HA (2010) Comparative pharmacokinetics of RAD001 (everolimus) in normal and tumor-bearing rodents. Cancer Chemother Pharmacol 65:625–639PubMedCrossRef
15.
go back to reference Kovarik JM, Kalbag J, Figueiredo J, Rouilly M, Frazier OL, Rordorf C (2002) Differential influence of two cyclosporine formulations on everolimus pharmacokinetics: a clinically relevant pharmacokinetic interaction. J Clin Pharmacol 42:95–99PubMedCrossRef Kovarik JM, Kalbag J, Figueiredo J, Rouilly M, Frazier OL, Rordorf C (2002) Differential influence of two cyclosporine formulations on everolimus pharmacokinetics: a clinically relevant pharmacokinetic interaction. J Clin Pharmacol 42:95–99PubMedCrossRef
16.
go back to reference Saber-Mahloogi H, Morse DE (2005) Pharmacology review-Sorafenib. Center for Drug Evaluation and Research, Rockville Saber-Mahloogi H, Morse DE (2005) Pharmacology review-Sorafenib. Center for Drug Evaluation and Research, Rockville
17.
go back to reference Jain L, Woo S, Gardner ER, Dahut WL, Kohn EC, Kummar S, Mould DR, Giaccone G, Yarchoan R, Venitz J, Figg WD (2011) Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br J Clin Pharmacol 72:294–305PubMedCrossRef Jain L, Woo S, Gardner ER, Dahut WL, Kohn EC, Kummar S, Mould DR, Giaccone G, Yarchoan R, Venitz J, Figg WD (2011) Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br J Clin Pharmacol 72:294–305PubMedCrossRef
18.
go back to reference Kovarik JM, Beyer D, Bizot MN, Jiang Q, Allison MJ, Schmouder RL (2005) Pharmacokinetic interaction between verapamil and everolimus in healthy subjects. Br J Clin Pharmacol 60:434–437PubMedCrossRef Kovarik JM, Beyer D, Bizot MN, Jiang Q, Allison MJ, Schmouder RL (2005) Pharmacokinetic interaction between verapamil and everolimus in healthy subjects. Br J Clin Pharmacol 60:434–437PubMedCrossRef
19.
go back to reference Hylander BL, Pitoniak R, Penetrante RB, Gibbs JF, Oktay D, Cheng J, Repasky EA (2005) The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. J Transl Med 3:22PubMedCrossRef Hylander BL, Pitoniak R, Penetrante RB, Gibbs JF, Oktay D, Cheng J, Repasky EA (2005) The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. J Transl Med 3:22PubMedCrossRef
20.
go back to reference Hsieh Y, Galviz G, Long BJ (2009) Ultra-performance hydrophilic interaction liquid chromatography/tandem mass spectrometry for the determination of everolimus in mouse plasma. Rapid Commun Mass Spectrom 23:1461–1466PubMedCrossRef Hsieh Y, Galviz G, Long BJ (2009) Ultra-performance hydrophilic interaction liquid chromatography/tandem mass spectrometry for the determination of everolimus in mouse plasma. Rapid Commun Mass Spectrom 23:1461–1466PubMedCrossRef
21.
go back to reference Jain L, Gardner ER, Venitz J, Dahut W, Figg WD (2008) Development of a rapid and sensitive LC-MS/MS assay for the determination of sorafenib in human plasma. J Pharm Biomed Anal 46:362–367PubMedCrossRef Jain L, Gardner ER, Venitz J, Dahut W, Figg WD (2008) Development of a rapid and sensitive LC-MS/MS assay for the determination of sorafenib in human plasma. J Pharm Biomed Anal 46:362–367PubMedCrossRef
22.
go back to reference Baxter LT, Zhu H, Mackensen DG, Jain RK (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54:1517–1528PubMed Baxter LT, Zhu H, Mackensen DG, Jain RK (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54:1517–1528PubMed
23.
go back to reference Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095PubMedCrossRef Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095PubMedCrossRef
24.
go back to reference D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 User’s Guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomed Simul Res D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 User’s Guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomed Simul Res
25.
go back to reference Pawaskar DK, Straubinger RM, Fetterly GJ, Hylander BH, Repasky EA, Ma WW, Jusko WJ (2012) Synergistic interactions between sorafenib and everolimus in pancreatic cancer xenografts in mice. Cancer Chemother Pharmacol. doi:10.1007/s00280-013-2117-x Pawaskar DK, Straubinger RM, Fetterly GJ, Hylander BH, Repasky EA, Ma WW, Jusko WJ (2012) Synergistic interactions between sorafenib and everolimus in pancreatic cancer xenografts in mice. Cancer Chemother Pharmacol. doi:10.​1007/​s00280-013-2117-x
26.
go back to reference Urva SR, Yang VC, Balthasar JP (2010) Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 99:1582–1600PubMedCrossRef Urva SR, Yang VC, Balthasar JP (2010) Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 99:1582–1600PubMedCrossRef
27.
go back to reference Friedman JJ (1968) Muscle blood flow and 86Rb extraction: 86Rb as a capillary flow indicator. Am J Physiol 214:488–493PubMed Friedman JJ (1968) Muscle blood flow and 86Rb extraction: 86Rb as a capillary flow indicator. Am J Physiol 214:488–493PubMed
28.
go back to reference Hotte SJ, Hirte HW (2002) BAY 43–9006: early clinical data in patients with advanced solid malignancies. Curr Pharm Des 8:2249–2253PubMedCrossRef Hotte SJ, Hirte HW (2002) BAY 43–9006: early clinical data in patients with advanced solid malignancies. Curr Pharm Des 8:2249–2253PubMedCrossRef
29.
go back to reference Kovarik JM, Beyer D, Bizot MN, Jiang Q, Shenouda M, Schmouder RL (2005) Blood concentrations of everolimus are markedly increased by ketoconazole. J Clin Pharmacol 45:514–518PubMedCrossRef Kovarik JM, Beyer D, Bizot MN, Jiang Q, Shenouda M, Schmouder RL (2005) Blood concentrations of everolimus are markedly increased by ketoconazole. J Clin Pharmacol 45:514–518PubMedCrossRef
30.
go back to reference Kovarik JM, Beyer D, Bizot MN, Jiang Q, Shenouda M, Schmouder RL (2005) Effect of multiple-dose erythromycin on everolimus pharmacokinetics. Eur J Clin Pharmacol 61:35–38PubMedCrossRef Kovarik JM, Beyer D, Bizot MN, Jiang Q, Shenouda M, Schmouder RL (2005) Effect of multiple-dose erythromycin on everolimus pharmacokinetics. Eur J Clin Pharmacol 61:35–38PubMedCrossRef
31.
go back to reference Kovarik JM, Hartmann S, Hubert M, Berthier S, Schneider W, Rosenkranz B, Rordorf C (2002) Pharmacokinetic and pharmacodynamic assessments of HMG-CoA reductase inhibitors when coadministered with everolimus. J Clin Pharmacol 42:222–228PubMedCrossRef Kovarik JM, Hartmann S, Hubert M, Berthier S, Schneider W, Rosenkranz B, Rordorf C (2002) Pharmacokinetic and pharmacodynamic assessments of HMG-CoA reductase inhibitors when coadministered with everolimus. J Clin Pharmacol 42:222–228PubMedCrossRef
32.
go back to reference Lathia C, Lettieri J, Cihon F, Gallentine M, Radtke M, Sundaresan P (2006) Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol 57:685–692PubMedCrossRef Lathia C, Lettieri J, Cihon F, Gallentine M, Radtke M, Sundaresan P (2006) Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol 57:685–692PubMedCrossRef
33.
go back to reference Gnoth MJ, Sandmann S, Engel K, Radtke M (2010) In vitro to in vivo comparison of the substrate characteristics of sorafenib tosylate toward P-glycoprotein. Drug Metab Dispos 38:1341–1346PubMedCrossRef Gnoth MJ, Sandmann S, Engel K, Radtke M (2010) In vitro to in vivo comparison of the substrate characteristics of sorafenib tosylate toward P-glycoprotein. Drug Metab Dispos 38:1341–1346PubMedCrossRef
34.
go back to reference Chu C, Abbara C, Noel-Hudson MS, Thomas-Bourgneuf L, Gonin P, Farinotti R, Bonhomme-Faivre L (2009) Disposition of everolimus in mdr1a-/1b- mice and after a pre-treatment of lapatinib in Swiss mice. Biochem Pharmacol 77:1629–1634PubMedCrossRef Chu C, Abbara C, Noel-Hudson MS, Thomas-Bourgneuf L, Gonin P, Farinotti R, Bonhomme-Faivre L (2009) Disposition of everolimus in mdr1a-/1b- mice and after a pre-treatment of lapatinib in Swiss mice. Biochem Pharmacol 77:1629–1634PubMedCrossRef
35.
go back to reference Crowe A, Lemaire M (1998) In vitro and in situ absorption of SDZ-RAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm Res 15:1666–1672PubMedCrossRef Crowe A, Lemaire M (1998) In vitro and in situ absorption of SDZ-RAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm Res 15:1666–1672PubMedCrossRef
Metadata
Title
Physiologically based pharmacokinetic models for everolimus and sorafenib in mice
Authors
Dipti K. Pawaskar
Robert M. Straubinger
Gerald J. Fetterly
Bonnie H. Hylander
Elizabeth A. Repasky
Wen W. Ma
William J. Jusko
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 5/2013
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-013-2116-y

Other articles of this Issue 5/2013

Cancer Chemotherapy and Pharmacology 5/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine