Skip to main content
Top
Published in: Annals of Hematology 3/2014

01-03-2014 | Original Article

Targeting connective tissue growth factor (CTGF) in acute lymphoblastic leukemia preclinical models: anti-CTGF monoclonal antibody attenuates leukemia growth

Authors: Hongbo Lu, Kensuke Kojima, Venkata Lokesh Battula, Borys Korchin, Yuexi Shi, Ye Chen, Suzanne Spong, Deborah A. Thomas, Hagop Kantarjian, Richard B. Lock, Michael Andreeff, Marina Konopleva

Published in: Annals of Hematology | Issue 3/2014

Login to get access

Abstract

Connective tissue growth factor (CTGF/CCN2) is involved in extracellular matrix production, tumor cell proliferation, adhesion, migration, and metastasis. Recent studies have shown that CTGF expression is elevated in precursor B-acute lymphoblastic leukemia (ALL) and that increased expression of CTGF is associated with inferior outcome in B-ALL. In this study, we characterized the functional role and downstream signaling pathways of CTGF in ALL cells. First, we utilized lentiviral shRNA to knockdown CTGF in RS4;11 and REH ALL cells expressing high levels of CTGF mRNA. Silencing of CTGF resulted in significant suppression of leukemia cell growth compared to control vector, which was associated with AKT/mTOR inactivation and increased levels of cyclin-dependent kinase inhibitor p27. CTGF knockdown sensitized ALL cells to vincristine and methotrexate. Treatment with an anti-CTGF monoclonal antibody, FG-3019, significantly prolonged survival of mice injected with primary xenograft B-ALL cells when co-treated with conventional chemotherapy (vincristine, L-asparaginase and dexamethasone). Data suggest that CTGF represents a targetable molecular aberration in B-ALL, and blocking CTGF signaling in conjunction with administration of chemotherapy may represent a novel therapeutic approach for ALL patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119(Pt 23):4803–4810CrossRefPubMed Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119(Pt 23):4803–4810CrossRefPubMed
2.
go back to reference Dhar A, Ray A (2010) The CCN family proteins in carcinogenesis. Exp Oncol 32(1):2–9PubMed Dhar A, Ray A (2010) The CCN family proteins in carcinogenesis. Exp Oncol 32(1):2–9PubMed
4.
go back to reference Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549CrossRefPubMed Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549CrossRefPubMed
5.
go back to reference Xie D, Yin D, Wang HJ, Liu GT, Elashoff R, Black K et al (2004) Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res 10(6):2072–2081CrossRefPubMed Xie D, Yin D, Wang HJ, Liu GT, Elashoff R, Black K et al (2004) Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res 10(6):2072–2081CrossRefPubMed
6.
go back to reference Koliopanos A, Friess H, di Mola FF, Tang WH, Kubulus D, Brigstock D et al (2002) Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 26(4):420–427CrossRefPubMed Koliopanos A, Friess H, di Mola FF, Tang WH, Kubulus D, Brigstock D et al (2002) Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 26(4):420–427CrossRefPubMed
7.
go back to reference Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N et al (2009) The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69(3):775–784CrossRefPubMedCentralPubMed Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N et al (2009) The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69(3):775–784CrossRefPubMedCentralPubMed
8.
go back to reference Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M (2006) Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5(5):1108–1116CrossRefPubMed Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M (2006) Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5(5):1108–1116CrossRefPubMed
9.
go back to reference Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K et al (2000) Expression of connective tissue growth factor in cartilaginous tumors. Cancer 89(7):1466–1473CrossRefPubMed Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K et al (2000) Expression of connective tissue growth factor in cartilaginous tumors. Cancer 89(7):1466–1473CrossRefPubMed
10.
go back to reference Chen PP, Li WJ, Wang Y, Zhao S, Li DY, Feng LY et al (2007) Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS One 2(6):e534CrossRefPubMedCentralPubMed Chen PP, Li WJ, Wang Y, Zhao S, Li DY, Feng LY et al (2007) Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS One 2(6):e534CrossRefPubMedCentralPubMed
11.
go back to reference Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738CrossRefPubMed Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738CrossRefPubMed
12.
go back to reference Wang MY, Chen PS, Prakash E, Hsu HC, Huang HY, Lin MT et al (2009) Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res 69(8):3482–3491CrossRefPubMed Wang MY, Chen PS, Prakash E, Hsu HC, Huang HY, Lin MT et al (2009) Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res 69(8):3482–3491CrossRefPubMed
13.
go back to reference Chen PS, Wang MY, Wu SN, Su JL, Hong CC, Chuang SE et al (2007) CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci 120(Pt 12):2053–2065CrossRefPubMed Chen PS, Wang MY, Wu SN, Su JL, Hong CC, Chuang SE et al (2007) CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci 120(Pt 12):2053–2065CrossRefPubMed
14.
go back to reference Yin D, Chen W, O'Kelly J, Lu D, Ham M, Doan NB et al (2010) Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int J Cancer 127(10):2257–2267CrossRefPubMedCentralPubMed Yin D, Chen W, O'Kelly J, Lu D, Ham M, Doan NB et al (2010) Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int J Cancer 127(10):2257–2267CrossRefPubMedCentralPubMed
15.
go back to reference Vorwerk P, Wex H, Hohmann B, Oh Y, Rosenfeld RG, Mittler U (2000) CTGF (IGFBP-rP2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (ALL). Br J Cancer 83(6):756–760CrossRefPubMedCentralPubMed Vorwerk P, Wex H, Hohmann B, Oh Y, Rosenfeld RG, Mittler U (2000) CTGF (IGFBP-rP2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (ALL). Br J Cancer 83(6):756–760CrossRefPubMedCentralPubMed
16.
go back to reference Tesfai Y, Ford J, Carter KW, Firth MJ, O'Leary RA, Gottardo NG et al (2012) Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy. Leuk Res 36(3):299–306CrossRefPubMed Tesfai Y, Ford J, Carter KW, Firth MJ, O'Leary RA, Gottardo NG et al (2012) Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy. Leuk Res 36(3):299–306CrossRefPubMed
17.
go back to reference Boag JM, Beesley AH, Firth MJ, Freitas JR, Ford J, Brigstock DR et al (2007) High expression of connective tissue growth factor in pre-B acute lymphoblastic leukaemia. Br J Haematol 138(6):740–748CrossRefPubMed Boag JM, Beesley AH, Firth MJ, Freitas JR, Ford J, Brigstock DR et al (2007) High expression of connective tissue growth factor in pre-B acute lymphoblastic leukaemia. Br J Haematol 138(6):740–748CrossRefPubMed
18.
go back to reference Sala-Torra O, Gundacker HM, Stirewalt DL, Ladne PA, Pogosova-Agadjanyan EL, Slovak ML et al (2007) Connective tissue growth factor (CTGF) expression and outcome in adult patients with acute lymphoblastic leukemia. Blood 109(7):3080–3083PubMed Sala-Torra O, Gundacker HM, Stirewalt DL, Ladne PA, Pogosova-Agadjanyan EL, Slovak ML et al (2007) Connective tissue growth factor (CTGF) expression and outcome in adult patients with acute lymphoblastic leukemia. Blood 109(7):3080–3083PubMed
19.
go back to reference Kang H, Chen IM, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR et al (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115(7):1394–1405CrossRefPubMed Kang H, Chen IM, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR et al (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115(7):1394–1405CrossRefPubMed
20.
go back to reference Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S et al (2004) Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 103(10):3905–3914CrossRefPubMed Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S et al (2004) Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 103(10):3905–3914CrossRefPubMed
21.
go back to reference Crean JK, Furlong F, Mitchell D, McArdle E, Godson C, Martin F (2006) Connective tissue growth factor/CCN2 stimulates actin disassembly through Akt/protein kinase B-mediated phosphorylation and cytoplasmic translocation of p27 (Kip-1). FASEB J 20(10):1712–1714CrossRefPubMed Crean JK, Furlong F, Mitchell D, McArdle E, Godson C, Martin F (2006) Connective tissue growth factor/CCN2 stimulates actin disassembly through Akt/protein kinase B-mediated phosphorylation and cytoplasmic translocation of p27 (Kip-1). FASEB J 20(10):1712–1714CrossRefPubMed
22.
go back to reference Crawford LA, Guney MA, Oh YA, Deyoung RA, Valenzuela DM, Murphy AJ et al (2009) Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and beta-cell proliferation during embryogenesis. Mol Endocrinol 23(3):324–336CrossRefPubMed Crawford LA, Guney MA, Oh YA, Deyoung RA, Valenzuela DM, Murphy AJ et al (2009) Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and beta-cell proliferation during embryogenesis. Mol Endocrinol 23(3):324–336CrossRefPubMed
23.
go back to reference Dornhöfer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N et al (2006) Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 66(11):5816–5827CrossRefPubMed Dornhöfer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N et al (2006) Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 66(11):5816–5827CrossRefPubMed
24.
go back to reference Szymanska B, Wilczynska-Kalak U, Kang MH, Liem NL, Carol H, Boehm I et al (2012) Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts. PLoS One 7(3):e33894CrossRefPubMedCentralPubMed Szymanska B, Wilczynska-Kalak U, Kang MH, Liem NL, Carol H, Boehm I et al (2012) Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts. PLoS One 7(3):e33894CrossRefPubMedCentralPubMed
25.
go back to reference Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva-Jr WA et al (2007) miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40(11):1435–1440CrossRefPubMed Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva-Jr WA et al (2007) miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40(11):1435–1440CrossRefPubMed
26.
go back to reference Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH et al (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23(2):313–322CrossRefPubMed Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH et al (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23(2):313–322CrossRefPubMed
27.
go back to reference Hong KH, Yoo SA, Kang SS, Choi JJ, Kim WU, Cho CS (2006) Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts. Clin Exp Immunol 146(2):362–370CrossRefPubMedCentralPubMed Hong KH, Yoo SA, Kang SS, Choi JJ, Kim WU, Cho CS (2006) Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts. Clin Exp Immunol 146(2):362–370CrossRefPubMedCentralPubMed
28.
go back to reference Recchia AG, De Francesco EM, Vivacqua A, Sisci D, Panno ML, Andò S et al (2011) The G protein-coupled receptor 30 is up-regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) in breast cancer cells and cardiomyocytes. J Biol Chem 286(12):10773–10782CrossRefPubMed Recchia AG, De Francesco EM, Vivacqua A, Sisci D, Panno ML, Andò S et al (2011) The G protein-coupled receptor 30 is up-regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) in breast cancer cells and cardiomyocytes. J Biol Chem 286(12):10773–10782CrossRefPubMed
29.
go back to reference Kondo S, Kubota S, Mukudai Y, Moritani N, Nishida T, Matsushita H et al (2006) Hypoxic regulation of stability of connective tissue growth factor/CCN2 mRNA by 3′-untranslated region interacting with a cellular protein in human chondrosarcoma cells. Oncogene 25(7):1099–1110CrossRefPubMed Kondo S, Kubota S, Mukudai Y, Moritani N, Nishida T, Matsushita H et al (2006) Hypoxic regulation of stability of connective tissue growth factor/CCN2 mRNA by 3′-untranslated region interacting with a cellular protein in human chondrosarcoma cells. Oncogene 25(7):1099–1110CrossRefPubMed
30.
go back to reference Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H et al (2011) Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoS One 6(8):e23108CrossRefPubMedCentralPubMed Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H et al (2011) Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoS One 6(8):e23108CrossRefPubMedCentralPubMed
31.
32.
go back to reference Debili N, Robin C, Schiavon V, Letestu R, Pflumio F, Mitjavila-Garcia MT et al (2001) Different expression of CD41 on human lymphoid and myeloid progenitors from adults and neonates. Blood 97(7):2023–2030CrossRefPubMed Debili N, Robin C, Schiavon V, Letestu R, Pflumio F, Mitjavila-Garcia MT et al (2001) Different expression of CD41 on human lymphoid and myeloid progenitors from adults and neonates. Blood 97(7):2023–2030CrossRefPubMed
33.
go back to reference Corbel C, Salaün J (2002) AlphaIIb integrin expression during development of the murine hemopoietic system. Dev Biol 243(2):301–311CrossRefPubMed Corbel C, Salaün J (2002) AlphaIIb integrin expression during development of the murine hemopoietic system. Dev Biol 243(2):301–311CrossRefPubMed
34.
go back to reference Mitjavila-Garcia MT, Cailleret M, Godin I, Nogueira MM, Cohen-Solal K, Schiavon V et al (2002) Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 129(8):2003–2013PubMed Mitjavila-Garcia MT, Cailleret M, Godin I, Nogueira MM, Cohen-Solal K, Schiavon V et al (2002) Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 129(8):2003–2013PubMed
35.
go back to reference Adler SG, Schwartz S, Williams ME, Arauz-Pacheco C, Bolton WK, Lee T et al (2010) Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol 5(8):1420–1428CrossRefPubMed Adler SG, Schwartz S, Williams ME, Arauz-Pacheco C, Bolton WK, Lee T et al (2010) Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol 5(8):1420–1428CrossRefPubMed
36.
go back to reference Heestand GM, Pipas JM, Valone F, McMullen AD, Gadea P, Williams D et al (2011) A phase I trial of the monoclonal antibody FG-3019 to connective tissue growth factor (CTGF) in locally advanced or metastatic pancreatic cancer [Abstract]. J Clin Oncol 29(Suppl. 4): Abstract 269 Heestand GM, Pipas JM, Valone F, McMullen AD, Gadea P, Williams D et al (2011) A phase I trial of the monoclonal antibody FG-3019 to connective tissue growth factor (CTGF) in locally advanced or metastatic pancreatic cancer [Abstract]. J Clin Oncol 29(Suppl. 4): Abstract 269
37.
go back to reference Hartel M, Di Mola FF, Gardini A, Zimmermann A, Di Sebastiano P, Guweidhi A et al (2004) Desmoplastic reaction influences pancreatic cancer growth behavior. World J Surg 28(8):818–825CrossRefPubMed Hartel M, Di Mola FF, Gardini A, Zimmermann A, Di Sebastiano P, Guweidhi A et al (2004) Desmoplastic reaction influences pancreatic cancer growth behavior. World J Surg 28(8):818–825CrossRefPubMed
38.
go back to reference Ueno H, Sakita-Ishikawa M, Morikawa Y, Nakano T, Kitamura T, Saito M (2003) A stromal cell-derived membrane protein that supports hematopoietic stem cells. Nat Immunol 4(5):457–463CrossRefPubMed Ueno H, Sakita-Ishikawa M, Morikawa Y, Nakano T, Kitamura T, Saito M (2003) A stromal cell-derived membrane protein that supports hematopoietic stem cells. Nat Immunol 4(5):457–463CrossRefPubMed
39.
go back to reference Battula VL, Cabreira M, Wang Z, Ma W, Benito J, Ruvolo PP et al (2010) Connective tissue growth factor (CTGF) is essential for self renewal and proliferation of mesenchymal stromal cells (MSCs) and affects leukemia-stromal interactions [Abstract]. Blood 116(21):1573, Abstract 3845 Battula VL, Cabreira M, Wang Z, Ma W, Benito J, Ruvolo PP et al (2010) Connective tissue growth factor (CTGF) is essential for self renewal and proliferation of mesenchymal stromal cells (MSCs) and affects leukemia-stromal interactions [Abstract]. Blood 116(21):1573, Abstract 3845
Metadata
Title
Targeting connective tissue growth factor (CTGF) in acute lymphoblastic leukemia preclinical models: anti-CTGF monoclonal antibody attenuates leukemia growth
Authors
Hongbo Lu
Kensuke Kojima
Venkata Lokesh Battula
Borys Korchin
Yuexi Shi
Ye Chen
Suzanne Spong
Deborah A. Thomas
Hagop Kantarjian
Richard B. Lock
Michael Andreeff
Marina Konopleva
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
Annals of Hematology / Issue 3/2014
Print ISSN: 0939-5555
Electronic ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-013-1939-2

Other articles of this Issue 3/2014

Annals of Hematology 3/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine