Skip to main content
Top
Published in: Annals of Hematology 11/2005

01-11-2005 | Original Article

Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue

Authors: Andreas Dickhut, Rainer Schwerdtfeger, Larissa Kuklick, Markus Ritter, Christian Thiede, Andreas Neubauer, Cornelia Brendel

Published in: Annals of Hematology | Issue 11/2005

Login to get access

Abstract

Mesenchymal stem cells (MSC) obtained from human bone marrow have been described as adult stem cells with the ability of extensive self-renewal and clonal expansion, as well as the capacity to differentiate into various tissue types and to modulate the immune system. Some data indicate that leukapheresis products may also contain non-hematopoietic stem cells, as they occur in whole bone marrow transplantation (BMT). However, there is still controversy whether MSC expand in the host after transplantation like blood progenitor cells do. Therefore, we were interested in finding out if graft MSC can be detected in leukapheresis products and in bone marrow after BMT and peripheral blood stem cell transplantation (PBSCT). Every sample from total bone marrow transplants exhibited growth of MSC after in vitro culture, but not one of nine leukapheresis products did. In addition, bone marrow aspirates of 9 patients receiving BMT and of 18 patients after PBSCT were examined for origin of MSC. Almost all MSC samples exhibited a complete host profile, whereas peripheral blood cells were of donor origin. We conclude that even if trace amounts of MSC are co-transplanted during PBSCT or BMT, they do not expand significantly in the host bone marrow.
Literature
2.
go back to reference Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435PubMed Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435PubMed
3.
go back to reference Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625CrossRefPubMed Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625CrossRefPubMed
4.
go back to reference Cassiede P, Dennis JE, Ma F, Caplan AI (1996) Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro. J Bone Miner Res 11:1264–1273PubMed Cassiede P, Dennis JE, Ma F, Caplan AI (1996) Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro. J Bone Miner Res 11:1264–1273PubMed
5.
go back to reference Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134CrossRefPubMed Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134CrossRefPubMed
6.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMed
7.
go back to reference Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652CrossRefPubMed Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652CrossRefPubMed
8.
go back to reference Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98CrossRefPubMed Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98CrossRefPubMed
9.
go back to reference Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426CrossRefPubMed Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426CrossRefPubMed
10.
go back to reference Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530CrossRefPubMed Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530CrossRefPubMed
11.
go back to reference Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96:10711–10716CrossRefPubMed Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96:10711–10716CrossRefPubMed
12.
go back to reference Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286CrossRefPubMed Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286CrossRefPubMed
13.
go back to reference Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 166:585–592CrossRefPubMed Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 166:585–592CrossRefPubMed
14.
go back to reference Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66CrossRefPubMed Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66CrossRefPubMed
15.
go back to reference Cheng L, Qasba P, Vanguri P, Thiede MA (2000) Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol 184:58–69CrossRefPubMed Cheng L, Qasba P, Vanguri P, Thiede MA (2000) Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol 184:58–69CrossRefPubMed
16.
go back to reference Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316PubMed Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316PubMed
17.
go back to reference Almeida-Porada G, El Shabrawy D, Porada C, Zanjani ED (2002) Differentiative potential of human metanephric mesenchymal cells. Exp Hematol 30:1454–1462CrossRefPubMed Almeida-Porada G, El Shabrawy D, Porada C, Zanjani ED (2002) Differentiative potential of human metanephric mesenchymal cells. Exp Hematol 30:1454–1462CrossRefPubMed
18.
go back to reference Li Y, Hisha H, Inaba M, Lian Z, Yu C, Kawamura M et al (2000) Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: a role of stromal cells in positive selection. Exp Hematol 28:950–960CrossRefPubMed Li Y, Hisha H, Inaba M, Lian Z, Yu C, Kawamura M et al (2000) Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: a role of stromal cells in positive selection. Exp Hematol 28:950–960CrossRefPubMed
19.
go back to reference Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48CrossRefPubMed Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48CrossRefPubMed
20.
go back to reference Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843CrossRefPubMed Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843CrossRefPubMed
21.
go back to reference Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441CrossRefPubMed Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441CrossRefPubMed
22.
go back to reference Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20CrossRefPubMed Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20CrossRefPubMed
23.
go back to reference Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213CrossRefPubMed Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213CrossRefPubMed
24.
go back to reference Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K (2004) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 33:1167CrossRef Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K (2004) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 33:1167CrossRef
25.
go back to reference Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274PubMed Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274PubMed
26.
go back to reference Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436CrossRefPubMed Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436CrossRefPubMed
27.
go back to reference Conrad C, Gottgens B, Kinston S, Ellwart J, Huss R (2002) GATA transcription in a small rhodamine 123(low)CD34(+) subpopulation of a peripheral blood-derived CD34(−)CD105(+) mesenchymal cell line. Exp Hematol 30:887–895CrossRefPubMed Conrad C, Gottgens B, Kinston S, Ellwart J, Huss R (2002) GATA transcription in a small rhodamine 123(low)CD34(+) subpopulation of a peripheral blood-derived CD34(−)CD105(+) mesenchymal cell line. Exp Hematol 30:887–895CrossRefPubMed
28.
go back to reference Lazarus HM, Haynesworth SE, Gerson SL, Caplan AI (1997) Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 6:447–455PubMed Lazarus HM, Haynesworth SE, Gerson SL, Caplan AI (1997) Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 6:447–455PubMed
29.
go back to reference Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S et al (2000) Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 96:3637–3643PubMed Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S et al (2000) Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 96:3637–3643PubMed
30.
go back to reference Keating A, Singer JW, Killen PD, Striker GE, Salo AC, Sanders J et al (1982) Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 298:280–283CrossRefPubMed Keating A, Singer JW, Killen PD, Striker GE, Salo AC, Sanders J et al (1982) Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 298:280–283CrossRefPubMed
31.
go back to reference Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328:429–432CrossRefPubMed Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328:429–432CrossRefPubMed
32.
go back to reference Hongeng S, Petvises S, Rerkamnuaychoke B, Worapongpaiboon S, Tardtong P, Apibal S et al (2001) Host origin of marrow mesenchymal stem cells following allogeneic cord-blood stem-cell transplantation. Int J Hematol 74:235–236PubMed Hongeng S, Petvises S, Rerkamnuaychoke B, Worapongpaiboon S, Tardtong P, Apibal S et al (2001) Host origin of marrow mesenchymal stem cells following allogeneic cord-blood stem-cell transplantation. Int J Hematol 74:235–236PubMed
33.
go back to reference Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R et al (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27:1675–1681CrossRefPubMed Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R et al (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27:1675–1681CrossRefPubMed
34.
go back to reference Laver J, Jhanwar SC, O’Reilly RJ, Castro-Malaspina H (1987) Host origin of the human hematopoietic microenvironment following allogeneic bone marrow transplantation. Blood 70:1966–1968PubMed Laver J, Jhanwar SC, O’Reilly RJ, Castro-Malaspina H (1987) Host origin of the human hematopoietic microenvironment following allogeneic bone marrow transplantation. Blood 70:1966–1968PubMed
35.
go back to reference Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29:244–255CrossRefPubMed Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29:244–255CrossRefPubMed
36.
go back to reference Mosca JD, Hendricks JK, Buyaner D, Davis-Sproul J, Chuang LC, Majumdar MK et al (2000) Mesenchymal stem cells as vehicles for gene delivery. Clin Orthop Relat Res:S71–S90CrossRef Mosca JD, Hendricks JK, Buyaner D, Davis-Sproul J, Chuang LC, Majumdar MK et al (2000) Mesenchymal stem cells as vehicles for gene delivery. Clin Orthop Relat Res:S71–S90CrossRef
37.
go back to reference Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294CrossRefPubMed Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294CrossRefPubMed
38.
go back to reference Brendel C, Kuklick L, Hartmann O, Kim TD, Boudriot U, Schwell D et al (2005) Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr (in press) Brendel C, Kuklick L, Hartmann O, Kim TD, Boudriot U, Schwell D et al (2005) Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr (in press)
39.
go back to reference Thiede C, Florek M, Bornhäuser M, Ritter M, Mohr B, Brendel C et al (1999) Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 23:1055–1060CrossRefPubMed Thiede C, Florek M, Bornhäuser M, Ritter M, Mohr B, Brendel C et al (1999) Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 23:1055–1060CrossRefPubMed
40.
go back to reference Reyes M, Koodie L, Jahagirdar B, Verfaillie CM (2001) Ex vivo and in vivo primitive hematopoiesis from a non-hematopoietic stem cell. Blood 98:713aCrossRef Reyes M, Koodie L, Jahagirdar B, Verfaillie CM (2001) Ex vivo and in vivo primitive hematopoiesis from a non-hematopoietic stem cell. Blood 98:713aCrossRef
41.
go back to reference Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S et al (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27:1460–1466CrossRefPubMed Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S et al (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27:1460–1466CrossRefPubMed
42.
go back to reference Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20CrossRefPubMed Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20CrossRefPubMed
43.
go back to reference Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937CrossRefPubMed Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937CrossRefPubMed
44.
go back to reference Agematsu K, Nakahori Y (1991) Recipient origin of bone marrow-derived fibroblastic stromal cells during all periods following bone marrow transplantation in humans. Br J Haematol 79:359–365PubMed Agematsu K, Nakahori Y (1991) Recipient origin of bone marrow-derived fibroblastic stromal cells during all periods following bone marrow transplantation in humans. Br J Haematol 79:359–365PubMed
45.
go back to reference Ikpeazu C, Davidson MK, Halteman D, Browning PJ, Brandt SJ (2000) Donor origin of circulating endothelial progenitors after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 6:301–308PubMed Ikpeazu C, Davidson MK, Halteman D, Browning PJ, Brandt SJ (2000) Donor origin of circulating endothelial progenitors after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 6:301–308PubMed
46.
go back to reference O’Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR et al (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364:179–182CrossRefPubMed O’Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR et al (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364:179–182CrossRefPubMed
47.
go back to reference Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin JH (2001) Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol 19:3685–3691PubMed Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin JH (2001) Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol 19:3685–3691PubMed
48.
go back to reference Flowers ME, Parker PM, Johnston LJ, Matos AV, Storer B, Bensinger WI et al (2002) Comparison of chronic graft-versus-host disease after transplantation of peripheral blood stem cells versus bone marrow in allogeneic recipients: long-term follow-up of a randomized trial. Blood 100:415–419CrossRefPubMed Flowers ME, Parker PM, Johnston LJ, Matos AV, Storer B, Bensinger WI et al (2002) Comparison of chronic graft-versus-host disease after transplantation of peripheral blood stem cells versus bone marrow in allogeneic recipients: long-term follow-up of a randomized trial. Blood 100:415–419CrossRefPubMed
Metadata
Title
Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue
Authors
Andreas Dickhut
Rainer Schwerdtfeger
Larissa Kuklick
Markus Ritter
Christian Thiede
Andreas Neubauer
Cornelia Brendel
Publication date
01-11-2005
Publisher
Springer-Verlag
Published in
Annals of Hematology / Issue 11/2005
Print ISSN: 0939-5555
Electronic ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-005-1067-8

Other articles of this Issue 11/2005

Annals of Hematology 11/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine