Skip to main content
Top
Published in: Surgical and Radiologic Anatomy 5/2013

01-07-2013 | Anatomic Bases of Medical, Radiological and Surgical Techniques

Demonstration of different histological layers of the pachygyria/agyria cortex using diffusion tensor MR imaging

Authors: Zarina A. Aziz, Jitender Saini, P. S. Bindu, G. G. Sharath Kumar

Published in: Surgical and Radiologic Anatomy | Issue 5/2013

Login to get access

Abstract

Purpose

Pachygyria/agyria are congenital brain malformations characterized by presence of a few broad, flat gyri with thickened cortex, resulting from arrest of neuronal migration in early gestation. We are hereby describing diffusion tensor imaging findings in different histological layers of lissencephaly cortex in two children.

Method

DTI in addition to conventional MR imaging was performed in two children on a 3 T MRI and post-processed with vendor supplied software to generate the fractional anisotropy, mean diffusivity and trace maps. Tractography was also performed to identify presence of tracts in the thickened cortex.

Results

DTI demonstrated the dysplastic multilayered cortex in cases of pachygyria/agyria; the thickened fourth layer and superficial layer demonstrated high anisotropy on diffusion tensor imaging.

Conclusion

DTI is a useful tool for identifying gross histological features of pachygyria–agyria complex. Superficial layer and thickened fourth layer demonstrate high anisotropy. Identification of anisotropy in the superficial layer has not been described in previous reports.
Literature
1.
go back to reference Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 65(12):1873–1887PubMedCrossRef Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 65(12):1873–1887PubMedCrossRef
2.
go back to reference Barkovich AJ (2005) Paediatric neuroimaging, 4th edn, Chap. 5, vol 1, 346 Barkovich AJ (2005) Paediatric neuroimaging, 4th edn, Chap. 5, vol 1, 346
3.
go back to reference Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122PubMedCrossRef Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122PubMedCrossRef
4.
go back to reference Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 256:293–302PubMed Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 256:293–302PubMed
5.
go back to reference Forman MS, Squier W, Dobyns WB, Golden JA (2005) Genotypically defined lissencephalies show distinct pathologies. J Neuropathol Exp Neurol 64:847–857PubMedCrossRef Forman MS, Squier W, Dobyns WB, Golden JA (2005) Genotypically defined lissencephalies show distinct pathologies. J Neuropathol Exp Neurol 64:847–857PubMedCrossRef
6.
go back to reference Friede RL (1989) Developmental neuropathology, 2nd edn. Springer, Berlin, pp 330–334CrossRef Friede RL (1989) Developmental neuropathology, 2nd edn. Springer, Berlin, pp 330–334CrossRef
7.
go back to reference Friocourt G, Marcorelles P, Saugier-Veber P, Quille ML, Marret S, Laquerrie`re A (2011) Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly. Acta Neuropathol 121:149–170PubMedCrossRef Friocourt G, Marcorelles P, Saugier-Veber P, Quille ML, Marret S, Laquerrie`re A (2011) Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly. Acta Neuropathol 121:149–170PubMedCrossRef
8.
go back to reference Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME et al (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63–72PubMedCrossRef Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME et al (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63–72PubMedCrossRef
9.
go back to reference Gupta RK, Hasan KM, Trivedi R, Pradhan M, Das V, Parikh NA, Narayana PA (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81:172–178PubMedCrossRef Gupta RK, Hasan KM, Trivedi R, Pradhan M, Das V, Parikh NA, Narayana PA (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81:172–178PubMedCrossRef
10.
go back to reference Gupta RK, Nath K, Prasad A, Prasad KN, Husain M, Rathore RKS et al (2008) In vitro demonstration of neuroinflammatory molecule expression in brain abscess with diffusion tensor imaging. AJNR 29:326–332PubMedCrossRef Gupta RK, Nath K, Prasad A, Prasad KN, Husain M, Rathore RKS et al (2008) In vitro demonstration of neuroinflammatory molecule expression in brain abscess with diffusion tensor imaging. AJNR 29:326–332PubMedCrossRef
11.
go back to reference Hennekam RCM, Barth PG (2003) Syndromic cortical dysplasias: a review. In: Barth PG (ed) Disorders of neuronal migration. MacKeith Press, London, pp 135–169 Hennekam RCM, Barth PG (2003) Syndromic cortical dysplasias: a review. In: Barth PG (ed) Disorders of neuronal migration. MacKeith Press, London, pp 135–169
12.
go back to reference Kao YC, Peng SS, Weng WC, Lin MI, Lee WT (2011) Evaluation of white matter changes in agyria-pachygyria complex using diffusion tensor imaging. J Child Neurol 26(4):433–439PubMedCrossRef Kao YC, Peng SS, Weng WC, Lin MI, Lee WT (2011) Evaluation of white matter changes in agyria-pachygyria complex using diffusion tensor imaging. J Child Neurol 26(4):433–439PubMedCrossRef
13.
go back to reference Kato M, Dobyns WB (2003) Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 12(1):89–96CrossRef Kato M, Dobyns WB (2003) Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 12(1):89–96CrossRef
14.
go back to reference Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M et al (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369PubMedCrossRef Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M et al (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369PubMedCrossRef
15.
go back to reference Kostovic I, Jovanov-Milosevic N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422PubMedCrossRef Kostovic I, Jovanov-Milosevic N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422PubMedCrossRef
16.
go back to reference Kriegstein AR, Noctor SC (2004) Pattern of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–399PubMedCrossRef Kriegstein AR, Noctor SC (2004) Pattern of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–399PubMedCrossRef
17.
go back to reference Sueng-Koo Lee, DongIk Kim, Kim J, Kim DJ, Kim HD, Kim DS et al (2005) Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics 25(1):53–65CrossRef Sueng-Koo Lee, DongIk Kim, Kim J, Kim DJ, Kim HD, Kim DS et al (2005) Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics 25(1):53–65CrossRef
18.
go back to reference Sueng-Koo Lee, Kim Dong Ik, Mori S, Kim J, Kim HD, Heo K et al (2004) Diffusion tensor MRI visualizes decreased subcortical fiber connectivity in focal cortical dysplasia. Neuroimage 22(4):1826–1829CrossRef Sueng-Koo Lee, Kim Dong Ik, Mori S, Kim J, Kim HD, Heo K et al (2004) Diffusion tensor MRI visualizes decreased subcortical fiber connectivity in focal cortical dysplasia. Neuroimage 22(4):1826–1829CrossRef
19.
go back to reference Maas LC, Mukherjee P, Carballido-Gamio J, Veeraraghavan S, Miller SP, Partridge SC et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22(3):1134–1140PubMedCrossRef Maas LC, Mukherjee P, Carballido-Gamio J, Veeraraghavan S, Miller SP, Partridge SC et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22(3):1134–1140PubMedCrossRef
20.
go back to reference Marin Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152(2):109–126PubMedCrossRef Marin Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152(2):109–126PubMedCrossRef
21.
go back to reference McKinstry RC, Mathur A, Miller JH, Ozcan A, Snyder AZ, Schefft GL et al (2002) Radial organization of developing preterm human cerebral cortex revealed by noninvasive water diffusion anisotropy MRI. Cereb Cortex 12(12):1237–1243PubMedCrossRef McKinstry RC, Mathur A, Miller JH, Ozcan A, Snyder AZ, Schefft GL et al (2002) Radial organization of developing preterm human cerebral cortex revealed by noninvasive water diffusion anisotropy MRI. Cereb Cortex 12(12):1237–1243PubMedCrossRef
22.
go back to reference Mori S, Crain BJ, Chacko VP, van Zijl PCM (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMedCrossRef Mori S, Crain BJ, Chacko VP, van Zijl PCM (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMedCrossRef
23.
go back to reference Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432PubMedCrossRef Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432PubMedCrossRef
24.
go back to reference Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM et al (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 7:2029–2037PubMedCrossRef Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM et al (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 7:2029–2037PubMedCrossRef
26.
go back to reference Rakic P, Kornack DR (2001) Neocortical expansion and elaboration during primate evolution: a view from neuroembryology. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 30–56CrossRef Rakic P, Kornack DR (2001) Neocortical expansion and elaboration during primate evolution: a view from neuroembryology. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 30–56CrossRef
27.
go back to reference Rakic P (2003) Developmental and evolutionary adaptation of cortical radial glia. Cereb Cortex 13:541–549PubMedCrossRef Rakic P (2003) Developmental and evolutionary adaptation of cortical radial glia. Cereb Cortex 13:541–549PubMedCrossRef
28.
go back to reference Raybaud C, Widjaja E (2011) Development and dysgenesis of the cerebral cortex: malformations of cortical development. Neuroimag Clin N Am 21(3):483–543CrossRef Raybaud C, Widjaja E (2011) Development and dysgenesis of the cerebral cortex: malformations of cortical development. Neuroimag Clin N Am 21(3):483–543CrossRef
29.
go back to reference Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB et al (1993) Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721PubMedCrossRef Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB et al (1993) Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721PubMedCrossRef
30.
go back to reference Rollins N (2005) Semilobar holoprosencephaly seen with diffusion tensor imaging and fiber tracking. AJNR Am J Neuroradiol 26:2148–2152PubMed Rollins N (2005) Semilobar holoprosencephaly seen with diffusion tensor imaging and fiber tracking. AJNR Am J Neuroradiol 26:2148–2152PubMed
31.
go back to reference Rollins N, Reyesa T, Chiac J (2005) Diffusion tensor imaging in lissencephaly. Am J Neuroradiol 26:1583–1586PubMed Rollins N, Reyesa T, Chiac J (2005) Diffusion tensor imaging in lissencephaly. Am J Neuroradiol 26:1583–1586PubMed
32.
go back to reference Sidman RL, Rakic P (1973) Neuronal migration with special reference to developing human brain: a review. Brain Res 62:1–35PubMedCrossRef Sidman RL, Rakic P (1973) Neuronal migration with special reference to developing human brain: a review. Brain Res 62:1–35PubMedCrossRef
33.
go back to reference Tau GZ, Peterson BS (2010) Normal development of brain circuits. Neuropsychopharmacology 35:147–168PubMedCrossRef Tau GZ, Peterson BS (2010) Normal development of brain circuits. Neuropsychopharmacology 35:147–168PubMedCrossRef
34.
go back to reference Trivedi R, Gupta RK, Hasan KM, Hou P, Prasad KN, Narayana PA (2006) Diffusion tensor imaging in polymicrogyria: a report of three cases. Neuroradiology 48(6):422–427PubMedCrossRef Trivedi R, Gupta RK, Hasan KM, Hou P, Prasad KN, Narayana PA (2006) Diffusion tensor imaging in polymicrogyria: a report of three cases. Neuroradiology 48(6):422–427PubMedCrossRef
35.
go back to reference Wahl M, Barkovich AJ, Mukherjee P (2010) Diffusion imaging and tractography of congenital brain malformations. Pediatr Radiol 40:59–67PubMedCrossRef Wahl M, Barkovich AJ, Mukherjee P (2010) Diffusion imaging and tractography of congenital brain malformations. Pediatr Radiol 40:59–67PubMedCrossRef
36.
go back to reference Widjaja E, Geibprasert S, Blaser S, Rayner T, Shannon P (2009) Abnormal fetal cerebral laminar organization in cobblestone complex as seen on post-mortem MRI and DTI. Pediatr Radiol 39:860–864PubMedCrossRef Widjaja E, Geibprasert S, Blaser S, Rayner T, Shannon P (2009) Abnormal fetal cerebral laminar organization in cobblestone complex as seen on post-mortem MRI and DTI. Pediatr Radiol 39:860–864PubMedCrossRef
Metadata
Title
Demonstration of different histological layers of the pachygyria/agyria cortex using diffusion tensor MR imaging
Authors
Zarina A. Aziz
Jitender Saini
P. S. Bindu
G. G. Sharath Kumar
Publication date
01-07-2013
Publisher
Springer-Verlag
Published in
Surgical and Radiologic Anatomy / Issue 5/2013
Print ISSN: 0930-1038
Electronic ISSN: 1279-8517
DOI
https://doi.org/10.1007/s00276-012-1050-8

Other articles of this Issue 5/2013

Surgical and Radiologic Anatomy 5/2013 Go to the issue