Skip to main content
Top
Published in: Aesthetic Plastic Surgery 4/2021

01-08-2021 | Original Article

Effect of Co-transplanting Stromal Vascular Fraction-Gelatin and Platelet-Rich Fibrin on the Long-Term Maintenance of Fat Volume

Authors: Fang Liu, Yu Zhao

Published in: Aesthetic Plastic Surgery | Issue 4/2021

Login to get access

Abstract

Objective

In the present study, we aimed to investigate the survival of stromal vascular fraction-gelatin (SVF-gel) grafts and determine whether co-transplantation of SVF-gel and platelet-rich fibrin (PRF) improves long-term maintenance of fat volume (Wei et al. in Oncotarget 8:68542–68556, 2017) in a rabbit model.

Methods

SVF-gel was transplanted into the ears of 12 rabbits with (experimental group) or without PRF (control group). Transplantation retention was evaluated based on weight, histology, and immunohistochemistry.

Results

In the 2nd and 4th weeks, the volume of fat was larger in the experimental group than in the control group. In the 6th week, the absorption of fat was noticeable in both groups, and there was no significant difference in the fat survival rate between the two groups (experimental group: 1.051 ± 0.144 and control group: 0.789 ± 0.232, P > 0.05). HE staining results: At week 2, adipocytes were observed in the experimental group and tended to mature over time. These adipocytes also exhibited an ordered arrangement. Adipocytes with abnormal morphology appeared in the control group in the 4th week. At different weeks, there were more inflammatory cells and fibroblasts in the experimental group than in the control group, and they were arranged in an ordered fashion. Immunohistochemical results: More brown areas were observed in the experimental group than in the control group, and the morphology and distribution of adipocytes in the experimental group were better than those in the control group. The distribution of fibrocytes was also more regular in the experimental group than in the control group.

Conclusion

SVF-gel cannot maintain long-term filling in rabbit ears. The addition of PRF has no influence, although PRF can induce SVF-gel to transform into adipocytes, and the anti-inflammatory effect is noticeable in the early period following the procedure. Co-transplantation also helped to ensure orderly arrangement of fibrin. There were no “volume preservation differences in this experimental model” perhaps there are differences if other models/methodology are employed.
No Level Assigned This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine Ratings, please refer to Table of Contents or online Instructions to Authors - www.​springer.​com/​00266.
Literature
1.
go back to reference Wei H, Gu SX, Liang YD et al (2017) Nanofat-derived stem cells with platelet-rich fibrin improve facial contour remodeling and skin rejuvenation after autologous structural fat transplantation. Oncotarget 8(40):68542–68556CrossRef Wei H, Gu SX, Liang YD et al (2017) Nanofat-derived stem cells with platelet-rich fibrin improve facial contour remodeling and skin rejuvenation after autologous structural fat transplantation. Oncotarget 8(40):68542–68556CrossRef
2.
go back to reference Neuberg.über die Wiederanheilung vollständig vom Körper getrennter, die ganze Fettschicht enthaltender Hautstucke. Zbl f Chirurgie 1893; 30:16 Neuberg.über die Wiederanheilung vollständig vom Körper getrennter, die ganze Fettschicht enthaltender Hautstucke. Zbl f Chirurgie 1893; 30:16
3.
go back to reference Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cellsfrom human adipose tissue: implications for cellbased therapies. Tissue Eng 7:211–228CrossRef Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cellsfrom human adipose tissue: implications for cellbased therapies. Tissue Eng 7:211–228CrossRef
4.
go back to reference Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. MolBiol Cell 13:4279–4295 Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. MolBiol Cell 13:4279–4295
5.
go back to reference Bourin P, Bunnell BA, Casteilla L et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–648CrossRef Bourin P, Bunnell BA, Casteilla L et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–648CrossRef
6.
go back to reference Yoshimura K, Sato K, Aoi N et al (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32(48–55):56–57 Yoshimura K, Sato K, Aoi N et al (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32(48–55):56–57
7.
go back to reference Riordan NH, Ichim TE, Min WP et al (2009) Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 7:29CrossRef Riordan NH, Ichim TE, Min WP et al (2009) Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 7:29CrossRef
8.
go back to reference Jiang S, Quan Y, Wang J, Cai J, Lu F (2020) Fat grafting for facial rejuvenation using stromal vascular fraction gel injection. Clin Plast Surg 47(1):73–79CrossRef Jiang S, Quan Y, Wang J, Cai J, Lu F (2020) Fat grafting for facial rejuvenation using stromal vascular fraction gel injection. Clin Plast Surg 47(1):73–79CrossRef
9.
go back to reference Cai J, Wang J, Hu W, Lu F (2020) Mechanical micronization of lipoaspirates for the treatment of horizontal neck lines. Plast Reconstr Surg 145(2):345–353CrossRef Cai J, Wang J, Hu W, Lu F (2020) Mechanical micronization of lipoaspirates for the treatment of horizontal neck lines. Plast Reconstr Surg 145(2):345–353CrossRef
10.
go back to reference Luo S, Zhang X, Dong H, Wen C, Hao L (2020) Correction of the tear trough deformity and concomitant infraorbital hollows with extracellular matrix/stromal vascular fraction gel. Dermatol Surg 46(12):e118–e125CrossRef Luo S, Zhang X, Dong H, Wen C, Hao L (2020) Correction of the tear trough deformity and concomitant infraorbital hollows with extracellular matrix/stromal vascular fraction gel. Dermatol Surg 46(12):e118–e125CrossRef
11.
go back to reference Yao Y, Cai J, Zhang P et al (2018) Adipose stromal vascular fraction gel grafting: a new method for tissue volumization and rejuvenation. Dermatol Surg 44(10):1278–1286CrossRef Yao Y, Cai J, Zhang P et al (2018) Adipose stromal vascular fraction gel grafting: a new method for tissue volumization and rejuvenation. Dermatol Surg 44(10):1278–1286CrossRef
12.
go back to reference Laloze J, Varin A, Bertheuil N, Grolleau JL, Vaysse C, Chaput B (2017) Cell-assisted lipotransfer: current concepts. Ann Chir Plast Esthet 62(6):609–616CrossRef Laloze J, Varin A, Bertheuil N, Grolleau JL, Vaysse C, Chaput B (2017) Cell-assisted lipotransfer: current concepts. Ann Chir Plast Esthet 62(6):609–616CrossRef
13.
go back to reference Toyserkani NM, Quaade ML, Sørensen JA (2016) Cell-assisted lipotransfer: a systematic review of its efficacy. Aesthetic Plast Surg 40(2):309–318CrossRef Toyserkani NM, Quaade ML, Sørensen JA (2016) Cell-assisted lipotransfer: a systematic review of its efficacy. Aesthetic Plast Surg 40(2):309–318CrossRef
14.
go back to reference Mashiko T, Wu SH, Feng J et al (2017) Mechanical micronization of lipoaspirates: squeeze and emulsification techniques. Plast Reconstr Surg 139(1):79–90CrossRef Mashiko T, Wu SH, Feng J et al (2017) Mechanical micronization of lipoaspirates: squeeze and emulsification techniques. Plast Reconstr Surg 139(1):79–90CrossRef
15.
go back to reference Friji M (2014) Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg 134(2):333e–334eCrossRef Friji M (2014) Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg 134(2):333e–334eCrossRef
16.
go back to reference Yu Q, Cai Y, Huang H et al (2018) Co-transplantation of nanofat enhances neovascularization and fat graft survival in nude mice. Aesthet Surg J 38(6):667–675CrossRef Yu Q, Cai Y, Huang H et al (2018) Co-transplantation of nanofat enhances neovascularization and fat graft survival in nude mice. Aesthet Surg J 38(6):667–675CrossRef
17.
go back to reference Wang J, Liao Y, Xia J et al (2019) Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem Cell Res Ther 10(1):42CrossRef Wang J, Liao Y, Xia J et al (2019) Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem Cell Res Ther 10(1):42CrossRef
18.
go back to reference Yao Y, Dong Z, Liao Y et al (2017) Adipose extracellular matrix/stromal vascular fraction gel: a novel adipose tissue-derived injectable for stem cell therapy. Plast Reconstr Surg 139(4):867–879CrossRef Yao Y, Dong Z, Liao Y et al (2017) Adipose extracellular matrix/stromal vascular fraction gel: a novel adipose tissue-derived injectable for stem cell therapy. Plast Reconstr Surg 139(4):867–879CrossRef
19.
go back to reference Sun M, He Y, Zhou T, Zhang P, Gao J, Lu F (2017) Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhances skin wound healing in a murine model. Biomed Res Int 2017:3105780PubMedPubMedCentral Sun M, He Y, Zhou T, Zhang P, Gao J, Lu F (2017) Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhances skin wound healing in a murine model. Biomed Res Int 2017:3105780PubMedPubMedCentral
20.
go back to reference Dohan DM, Choukroun J, Diss A et al (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(3):e37-44CrossRef Dohan DM, Choukroun J, Diss A et al (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(3):e37-44CrossRef
21.
go back to reference Bertheuil N, Chaput B, Ménard C et al (2019) Adipose mesenchymal stromal cells: definition, immunomodulatory properties, mechanical isolation and interest for plastic surgery. Ann Chir Plast Esthet. 64(1):1–10CrossRef Bertheuil N, Chaput B, Ménard C et al (2019) Adipose mesenchymal stromal cells: definition, immunomodulatory properties, mechanical isolation and interest for plastic surgery. Ann Chir Plast Esthet. 64(1):1–10CrossRef
22.
go back to reference Karagergou E, Dionyssopoulos A, Karayannopoulou M et al (2018) Adipose-derived stromal vascular fraction aids epithelialisation and angiogenesis in an animal model. J Wound Care 27(10):637–644CrossRef Karagergou E, Dionyssopoulos A, Karayannopoulou M et al (2018) Adipose-derived stromal vascular fraction aids epithelialisation and angiogenesis in an animal model. J Wound Care 27(10):637–644CrossRef
23.
go back to reference Zhu M, Xue J, Lu S et al (2019) Anti-inflammatory effect of stromal vascular fraction cells in fat transplantation. Exp Ther Med 17(2):1435–1439PubMed Zhu M, Xue J, Lu S et al (2019) Anti-inflammatory effect of stromal vascular fraction cells in fat transplantation. Exp Ther Med 17(2):1435–1439PubMed
24.
go back to reference Han Y, Ren J, Bai Y et al (2019) Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int J Biochem Cell Biol 109:59–68CrossRef Han Y, Ren J, Bai Y et al (2019) Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int J Biochem Cell Biol 109:59–68CrossRef
25.
go back to reference Liu B, Tan XY, Liu YP et al (2013) The adjuvant use of stromal vascular fraction and platelet-rich fibrin for autologous adipose tissue transplantation. Tissue Eng Part C Methods 19(1):1–14CrossRef Liu B, Tan XY, Liu YP et al (2013) The adjuvant use of stromal vascular fraction and platelet-rich fibrin for autologous adipose tissue transplantation. Tissue Eng Part C Methods 19(1):1–14CrossRef
26.
go back to reference Nürnberger S, Lindner C, Maier J et al (2019) Adipose-tissue-derived therapeutic cells in their natural environment as an autologous cell therapy strategy: the microtissue-stromal vascular fraction. Eur Cell Mater. 37:113–133CrossRef Nürnberger S, Lindner C, Maier J et al (2019) Adipose-tissue-derived therapeutic cells in their natural environment as an autologous cell therapy strategy: the microtissue-stromal vascular fraction. Eur Cell Mater. 37:113–133CrossRef
27.
go back to reference Hodde JP, Record RD, Liang HA, Badylak SF (2001) Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium 8(1):11–24CrossRef Hodde JP, Record RD, Liang HA, Badylak SF (2001) Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium 8(1):11–24CrossRef
28.
go back to reference Deng C, He Y, Feng J et al (2017) Extracellular matrix/stromal vascular fraction gel conditioned medium accelerates wound healing in a murine model. Wound Repair Regen 25(6):923–932CrossRef Deng C, He Y, Feng J et al (2017) Extracellular matrix/stromal vascular fraction gel conditioned medium accelerates wound healing in a murine model. Wound Repair Regen 25(6):923–932CrossRef
29.
go back to reference Butala P, Hazen A, Szpalski C, Sultan SM et al (2012) Endogenous stem cell therapy enhances fat graft survival. Plast Reconstr Surg 130:293–306CrossRef Butala P, Hazen A, Szpalski C, Sultan SM et al (2012) Endogenous stem cell therapy enhances fat graft survival. Plast Reconstr Surg 130:293–306CrossRef
30.
go back to reference Kapur SK, Katz AJ (2013) Review of the adipose derived stem cell secretome. Biochimie 95:2222–2228CrossRef Kapur SK, Katz AJ (2013) Review of the adipose derived stem cell secretome. Biochimie 95:2222–2228CrossRef
32.
go back to reference Deng C et al (2019) Conditioned medium from 3D culture system of stromal vascular fraction cells accelerates wound healing in diabetic rats. Regen Med 14(10):925–937CrossRef Deng C et al (2019) Conditioned medium from 3D culture system of stromal vascular fraction cells accelerates wound healing in diabetic rats. Regen Med 14(10):925–937CrossRef
33.
go back to reference Zhang P, Feng J, Liao Y et al (2018) Ischemic flap survival improvement by composition-selective fat grafting with novel adipose tissue derived product - stromal vascular fraction gel. Biochem Biophys Res Commun. 495(3):2249–2256CrossRef Zhang P, Feng J, Liao Y et al (2018) Ischemic flap survival improvement by composition-selective fat grafting with novel adipose tissue derived product - stromal vascular fraction gel. Biochem Biophys Res Commun. 495(3):2249–2256CrossRef
34.
go back to reference Yu P, Zhai Z, Lu H et al (2020) Platelet-rich fibrin improves fat graft survival possibly by promoting angiogenesis and adipogenesis, inhibiting apoptosis, and regulating collagen production. Aesthet Surg J 40(9):NP530–NP545CrossRef Yu P, Zhai Z, Lu H et al (2020) Platelet-rich fibrin improves fat graft survival possibly by promoting angiogenesis and adipogenesis, inhibiting apoptosis, and regulating collagen production. Aesthet Surg J 40(9):NP530–NP545CrossRef
35.
go back to reference Olenczak JB, Seaman SA, Lin KY et al (2017) Effects of collagenase digestion and stromal vascular fraction supplementation on volume retention of fat grafts. Ann Plast Surg 78(6S Suppl 5):S335–S342CrossRef Olenczak JB, Seaman SA, Lin KY et al (2017) Effects of collagenase digestion and stromal vascular fraction supplementation on volume retention of fat grafts. Ann Plast Surg 78(6S Suppl 5):S335–S342CrossRef
Metadata
Title
Effect of Co-transplanting Stromal Vascular Fraction-Gelatin and Platelet-Rich Fibrin on the Long-Term Maintenance of Fat Volume
Authors
Fang Liu
Yu Zhao
Publication date
01-08-2021
Publisher
Springer US
Published in
Aesthetic Plastic Surgery / Issue 4/2021
Print ISSN: 0364-216X
Electronic ISSN: 1432-5241
DOI
https://doi.org/10.1007/s00266-021-02240-4

Other articles of this Issue 4/2021

Aesthetic Plastic Surgery 4/2021 Go to the issue