Skip to main content
Top
Published in: International Orthopaedics 12/2013

01-12-2013 | Review Article

Role of mesenchymal stem cells in bone regeneration and fracture repair: a review

Authors: Xin Wang, Yu Wang, Wenlong Gou, Qiang Lu, Jiang Peng, Shibi Lu

Published in: International Orthopaedics | Issue 12/2013

Login to get access

Abstract

Mesenchymal stem cells (MSCs) are non-haematopoietic stromal stem cells that have many sources, such as bone marrow, periosteum, vessel walls, adipose, muscle, tendon, peripheral circulation, umbilical cord blood, skin and dental tissues. They are capable of self-replication and of differentiating into, and contributing to the regeneration of, mesenchymal tissues, such as bone, cartilage, ligament, tendon, muscle and adipose tissue. The homing of MSCs may play an important role in the repair of bone fractures. As a composite material, the formation and growth of bone tissue is a complex process, including molecular, cell and biochemical metabolic changes. The recruitment of factors with an adequate number of MSCs and the micro-environment around the fracture are effective for fracture repair. Several studies have investigated the functional expression of various chemokine receptors, trophic factors and adhesion molecules in human MSCs. Many external factors affect MSC homing. MSCs have been used as seed cells in building tissue-engineered bone grafts. Scaffolds seeded with MSCs are most often used in tissue engineering and include biotic and abiotic materials. This knowledge provides a platform for the development of novel therapies for bone regeneration with endogenous MSCs.
Literature
1.
go back to reference Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedCrossRef Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedCrossRef
2.
go back to reference Aghaloo T, Jiang X, Soo C et al (2007) A study of the role of nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Mol Ther 15:1872–1880PubMedCrossRef Aghaloo T, Jiang X, Soo C et al (2007) A study of the role of nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Mol Ther 15:1872–1880PubMedCrossRef
3.
go back to reference Bai Y, Li P, Yin G et al (2013) BMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Biotechnol Lett 35:301–308PubMedCrossRef Bai Y, Li P, Yin G et al (2013) BMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Biotechnol Lett 35:301–308PubMedCrossRef
4.
go back to reference Battula VL, Bareiss PM, Treml S et al (2007) Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75:279–291PubMedCrossRef Battula VL, Bareiss PM, Treml S et al (2007) Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75:279–291PubMedCrossRef
5.
go back to reference Bi Y, Ehirchiou D, Kilts TM et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227PubMedCrossRef Bi Y, Ehirchiou D, Kilts TM et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227PubMedCrossRef
6.
go back to reference Brighton CT, Krebs AG (1972) Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg Am 54:323–332PubMed Brighton CT, Krebs AG (1972) Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg Am 54:323–332PubMed
7.
go back to reference Bruder SP, Kurth AA, Shea M et al (1998) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162PubMedCrossRef Bruder SP, Kurth AA, Shea M et al (1998) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162PubMedCrossRef
8.
go back to reference Buijs JT, Henriquez NV, van Overveld PG et al (2007) TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis 24:609–617PubMedCrossRef Buijs JT, Henriquez NV, van Overveld PG et al (2007) TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis 24:609–617PubMedCrossRef
9.
go back to reference Calori GM, Giannoudis PV (2011) Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury 42:1191–1193PubMedCrossRef Calori GM, Giannoudis PV (2011) Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury 42:1191–1193PubMedCrossRef
11.
go back to reference Chen WJ, Jingushi S, Aoyama I et al (2004) Effects of FGF-2 on metaphyseal fracture repair in rabbit tibiae. J Bone Miner Metab 22:303–309PubMedCrossRef Chen WJ, Jingushi S, Aoyama I et al (2004) Effects of FGF-2 on metaphyseal fracture repair in rabbit tibiae. J Bone Miner Metab 22:303–309PubMedCrossRef
12.
go back to reference Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24:274–282PubMedCrossRef Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24:274–282PubMedCrossRef
13.
go back to reference D’Amelio P, Cristofaro MA, Grimaldi A et al (2010) The role of circulating bone cell precursors in fracture healing. Calcif Tissue Int 86:463–469PubMedCrossRef D’Amelio P, Cristofaro MA, Grimaldi A et al (2010) The role of circulating bone cell precursors in fracture healing. Calcif Tissue Int 86:463–469PubMedCrossRef
14.
go back to reference D’Ippolito G, Schiller PC, Ricordi C et al (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115–1122PubMedCrossRef D’Ippolito G, Schiller PC, Ricordi C et al (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115–1122PubMedCrossRef
15.
go back to reference da Silva ML, Sand TT, Harman RJ et al (2009) MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A 15:221–229CrossRef da Silva ML, Sand TT, Harman RJ et al (2009) MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A 15:221–229CrossRef
16.
go back to reference Di Bernardo G, Galderisi U, Fiorito C et al (2010) Dual role of parathyroid hormone in endothelial progenitor cells and marrow stromal mesenchymal stem cells. J Cell Physiol 222:474–480PubMedCrossRef Di Bernardo G, Galderisi U, Fiorito C et al (2010) Dual role of parathyroid hormone in endothelial progenitor cells and marrow stromal mesenchymal stem cells. J Cell Physiol 222:474–480PubMedCrossRef
17.
go back to reference Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404PubMedCrossRef Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404PubMedCrossRef
18.
go back to reference Farrington-Rock C, Crofts NJ, Doherty MJ et al (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232PubMedCrossRef Farrington-Rock C, Crofts NJ, Doherty MJ et al (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232PubMedCrossRef
19.
go back to reference Gamradt SC, Abe N, Bahamonde ME et al (2006) Tracking expression of virally mediated BMP-2 in gene therapy for bone repair. Clin Orthop Relat Res 450:238–245PubMedCrossRef Gamradt SC, Abe N, Bahamonde ME et al (2006) Tracking expression of virally mediated BMP-2 in gene therapy for bone repair. Clin Orthop Relat Res 450:238–245PubMedCrossRef
20.
go back to reference Gamradt SC, Lieberman JR (2004) Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng 32:136–147PubMedCrossRef Gamradt SC, Lieberman JR (2004) Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng 32:136–147PubMedCrossRef
21.
go back to reference Gao J, Dennis JE, Muzic RF et al (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20PubMedCrossRef Gao J, Dennis JE, Muzic RF et al (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20PubMedCrossRef
22.
go back to reference Genetos DC, Toupadakis CA, Raheja LF et al (2010) Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 110:457–467PubMed Genetos DC, Toupadakis CA, Raheja LF et al (2010) Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 110:457–467PubMed
23.
go back to reference Giannelli M, Chellini F, Sassoli C et al (2013) Photoactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action. J Cell Physiol 228:172–181PubMedCrossRef Giannelli M, Chellini F, Sassoli C et al (2013) Photoactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action. J Cell Physiol 228:172–181PubMedCrossRef
24.
go back to reference Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–S6CrossRef Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–S6CrossRef
25.
go back to reference Granero-Moltó F, Weis JA, Miga MI et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898PubMedCrossRef Granero-Moltó F, Weis JA, Miga MI et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898PubMedCrossRef
26.
go back to reference Griffin M, Iqbal SA, Sebastian A et al (2011) Degenerate wave and capacitive coupling increase human MSC invasion and proliferation while reducing cytotoxicity in an in vitro wound healing model. PLoS One 6:e23404PubMedCrossRef Griffin M, Iqbal SA, Sebastian A et al (2011) Degenerate wave and capacitive coupling increase human MSC invasion and proliferation while reducing cytotoxicity in an in vitro wound healing model. PLoS One 6:e23404PubMedCrossRef
27.
go back to reference Gu Q, Cai Y, Huang C et al (2012) Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag 8:202–208PubMed Gu Q, Cai Y, Huang C et al (2012) Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag 8:202–208PubMed
28.
go back to reference Hoffmann A, Gross G (2007) Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches. Int Orthop 31:791–797PubMedCrossRef Hoffmann A, Gross G (2007) Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches. Int Orthop 31:791–797PubMedCrossRef
29.
go back to reference Honczarenko M, Le Y, Swierkowski M et al (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041PubMedCrossRef Honczarenko M, Le Y, Swierkowski M et al (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041PubMedCrossRef
30.
go back to reference Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937PubMedCrossRef Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937PubMedCrossRef
31.
go back to reference Huang XP, Sun Z, Miyagi Y et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429PubMedCrossRef Huang XP, Sun Z, Miyagi Y et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429PubMedCrossRef
32.
go back to reference Hui CF, Chan CW, Yeung HY et al (2011) Low-intensity pulsed ultrasound enhances posterior spinal fusion implanted with mesenchymal stem cells-calcium phosphate composite without bone grafting. Spine (Phila Pa 1976) 36:1010–1016 Hui CF, Chan CW, Yeung HY et al (2011) Low-intensity pulsed ultrasound enhances posterior spinal fusion implanted with mesenchymal stem cells-calcium phosphate composite without bone grafting. Spine (Phila Pa 1976) 36:1010–1016
33.
go back to reference Ivkovic A, Marijanovic I, Hudetz D et al (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite Ed) 3:923–944 Ivkovic A, Marijanovic I, Hudetz D et al (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite Ed) 3:923–944
34.
go back to reference Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–425PubMedCrossRef Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–425PubMedCrossRef
35.
go back to reference Jones EA, English A, Henshaw K et al (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 50:817–827PubMedCrossRef Jones EA, English A, Henshaw K et al (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 50:817–827PubMedCrossRef
36.
go back to reference Kawate K, Yajima H, Ohgushi H et al (2006) Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs 30:960–962PubMedCrossRef Kawate K, Yajima H, Ohgushi H et al (2006) Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs 30:960–962PubMedCrossRef
37.
go back to reference Kim SH, Kim YS, Lee SY et al (2011) Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow. J Periodontal Implant Sci 41:192–200PubMedCrossRef Kim SH, Kim YS, Lee SY et al (2011) Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow. J Periodontal Implant Sci 41:192–200PubMedCrossRef
38.
go back to reference Kitaori T, Ito H, Schwarz EM et al (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60:813–823PubMedCrossRef Kitaori T, Ito H, Schwarz EM et al (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60:813–823PubMedCrossRef
39.
go back to reference Klyushnenkova E, Mosca JD, Zernetkina V et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57PubMedCrossRef Klyushnenkova E, Mosca JD, Zernetkina V et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57PubMedCrossRef
40.
go back to reference Kodama A, Kamei N, Kamei G et al (2012) In vivo bioluminescence imaging of transplanted bone marrow mesenchymal stromal cells using a magnetic delivery system in a rat fracture model. J Bone Joint Surg Br 94:998–1006PubMed Kodama A, Kamei N, Kamei G et al (2012) In vivo bioluminescence imaging of transplanted bone marrow mesenchymal stromal cells using a magnetic delivery system in a rat fracture model. J Bone Joint Surg Br 94:998–1006PubMed
41.
go back to reference Kotobuki N, Katsube Y, Katou Y et al (2008) In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplant 17:705–712PubMedCrossRef Kotobuki N, Katsube Y, Katou Y et al (2008) In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplant 17:705–712PubMedCrossRef
42.
go back to reference Kumagai K, Vasanji A, Drazba JA et al (2008) Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J Orthop Res 26:165–175PubMedCrossRef Kumagai K, Vasanji A, Drazba JA et al (2008) Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J Orthop Res 26:165–175PubMedCrossRef
43.
go back to reference Lavoie JF, Biernaskie JA, Chen Y et al (2009) Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair. Stem Cells Dev 18:893–906PubMedCrossRef Lavoie JF, Biernaskie JA, Chen Y et al (2009) Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair. Stem Cells Dev 18:893–906PubMedCrossRef
44.
go back to reference Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675PubMedCrossRef Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675PubMedCrossRef
45.
go back to reference Liu C, Chen Z, Zhang T et al (2006) Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 8:716–724PubMedCrossRef Liu C, Chen Z, Zhang T et al (2006) Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 8:716–724PubMedCrossRef
46.
go back to reference Lu SS, Zhang X, Soo C et al (2007) The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J 7:50–60PubMedCrossRef Lu SS, Zhang X, Soo C et al (2007) The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J 7:50–60PubMedCrossRef
47.
go back to reference Ma X, Zhang X, Jia Y et al (2013) Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells. Int Orthop 37:1399–1404PubMedCrossRef Ma X, Zhang X, Jia Y et al (2013) Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells. Int Orthop 37:1399–1404PubMedCrossRef
48.
go back to reference Mendelson A, Frank E, Allred C et al (2011) Chondrogenesis by chemotactic homing of synovium, bone marrow, and adipose stem cells in vitro. FASEB J 25:3496–3504PubMedCrossRef Mendelson A, Frank E, Allred C et al (2011) Chondrogenesis by chemotactic homing of synovium, bone marrow, and adipose stem cells in vitro. FASEB J 25:3496–3504PubMedCrossRef
49.
go back to reference Myers TJ, Yan Y, Granero-Molto F et al (2012) Systemically delivered insulin-like growth factor-I enhances mesenchymal stem cell-dependent fracture healing. Growth Factors 30:230–241PubMedCrossRef Myers TJ, Yan Y, Granero-Molto F et al (2012) Systemically delivered insulin-like growth factor-I enhances mesenchymal stem cell-dependent fracture healing. Growth Factors 30:230–241PubMedCrossRef
50.
go back to reference Nakahara H, Goldberg VM, Caplan AI (1991) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9:465–476PubMedCrossRef Nakahara H, Goldberg VM, Caplan AI (1991) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9:465–476PubMedCrossRef
51.
go back to reference Nohmi S, Yamamoto Y, Mizukami H et al (2012) Post injury changes in the properties of mesenchymal stem cells derived from human anterior cruciate ligaments. Int Orthop 36:1515–1522PubMedCrossRef Nohmi S, Yamamoto Y, Mizukami H et al (2012) Post injury changes in the properties of mesenchymal stem cells derived from human anterior cruciate ligaments. Int Orthop 36:1515–1522PubMedCrossRef
52.
go back to reference Nunes SP, Galembeck F (1985) Percoll and Ficoll self-generated density gradients by low-speed osmocentrifugation. Anal Biochem 146:48–51PubMedCrossRef Nunes SP, Galembeck F (1985) Percoll and Ficoll self-generated density gradients by low-speed osmocentrifugation. Anal Biochem 146:48–51PubMedCrossRef
53.
go back to reference Ode A, Kopf J, Kurtz A et al (2011) CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. Eur Cell Mater 22:26–42PubMed Ode A, Kopf J, Kurtz A et al (2011) CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. Eur Cell Mater 22:26–42PubMed
54.
go back to reference Otto WR, Rao J (2004) Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif 37:97–110PubMedCrossRef Otto WR, Rao J (2004) Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif 37:97–110PubMedCrossRef
55.
go back to reference Raheja LF, Genetos DC, Yellowley CE (2010) The effect of oxygen tension on the long-term osteogenic differentiation and MMP/TIMP expression of human mesenchymal stem cells. Cells Tissues Organs 191:175–184PubMedCrossRef Raheja LF, Genetos DC, Yellowley CE (2010) The effect of oxygen tension on the long-term osteogenic differentiation and MMP/TIMP expression of human mesenchymal stem cells. Cells Tissues Organs 191:175–184PubMedCrossRef
56.
go back to reference Rodríguez-Lozano FJ, Bueno C, Insausti CL et al (2011) Mesenchymal stem cells derived from dental tissues. Int Endod J 44:800–806PubMedCrossRef Rodríguez-Lozano FJ, Bueno C, Insausti CL et al (2011) Mesenchymal stem cells derived from dental tissues. Int Endod J 44:800–806PubMedCrossRef
57.
go back to reference Rombouts WJ, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17:160–170PubMedCrossRef Rombouts WJ, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17:160–170PubMedCrossRef
58.
go back to reference Rubin C, Turner AS, Bain S et al (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604PubMedCrossRef Rubin C, Turner AS, Bain S et al (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604PubMedCrossRef
59.
go back to reference Rui YF, Lui PP, Lee YW et al (2012) Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells. Int Orthop 36:1099–1107PubMedCrossRef Rui YF, Lui PP, Lee YW et al (2012) Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells. Int Orthop 36:1099–1107PubMedCrossRef
61.
go back to reference Schindeler A, McDonald MM, Bokko P et al (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19:459–466PubMedCrossRef Schindeler A, McDonald MM, Bokko P et al (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19:459–466PubMedCrossRef
62.
go back to reference Schrepfer S, Deuse T, Reichenspurner H et al (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576PubMedCrossRef Schrepfer S, Deuse T, Reichenspurner H et al (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576PubMedCrossRef
63.
go back to reference Schuh EM, Friedman MS, Carrade DD et al (2009) Identification of variables that optimize isolation and culture of multipotent mesenchymal stem cells from equine umbilical-cord blood. Am J Vet Res 70:1526–1535PubMedCrossRef Schuh EM, Friedman MS, Carrade DD et al (2009) Identification of variables that optimize isolation and culture of multipotent mesenchymal stem cells from equine umbilical-cord blood. Am J Vet Res 70:1526–1535PubMedCrossRef
64.
go back to reference Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480PubMed Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480PubMed
65.
go back to reference Shinohara K, Greenfield S, Pan H et al (2011) Stromal cell-derived factor-1 and monocyte chemotactic protein-3 improve recruitment of osteogenic cells into sites of musculoskeletal repair. J Orthop Res 29:1064–1069PubMedCrossRef Shinohara K, Greenfield S, Pan H et al (2011) Stromal cell-derived factor-1 and monocyte chemotactic protein-3 improve recruitment of osteogenic cells into sites of musculoskeletal repair. J Orthop Res 29:1064–1069PubMedCrossRef
66.
go back to reference Siu RK, Lu SS, Li W et al (2011) Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue Eng Part A 17:1123–1135PubMedCrossRef Siu RK, Lu SS, Li W et al (2011) Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue Eng Part A 17:1123–1135PubMedCrossRef
67.
go back to reference Takeuchi M, Takeuchi K, Kohara A et al (2007) Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 43:129–138PubMedCrossRef Takeuchi M, Takeuchi K, Kohara A et al (2007) Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 43:129–138PubMedCrossRef
68.
go back to reference Tian LL, Yue W, Zhu F et al (2011) Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 226:1860–1867PubMedCrossRef Tian LL, Yue W, Zhu F et al (2011) Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 226:1860–1867PubMedCrossRef
69.
go back to reference Tintut Y, Alfonso Z, Saini T et al (2003) Multilineage potential of cells from the artery wall. Circulation 108:2505–2510PubMedCrossRef Tintut Y, Alfonso Z, Saini T et al (2003) Multilineage potential of cells from the artery wall. Circulation 108:2505–2510PubMedCrossRef
70.
go back to reference Toupadakis CA, Wong A, Genetos DC et al (2012) Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair. J Orthop Res 30:1853–1859PubMedCrossRef Toupadakis CA, Wong A, Genetos DC et al (2012) Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair. J Orthop Res 30:1853–1859PubMedCrossRef
71.
go back to reference Tsai MT, Lin DJ, Huang S et al (2012) Osteogenic differentiation is synergistically influenced by osteoinductive treatment and direct cell-cell contact between murine osteoblasts and mesenchymal stem cells. Int Orthop 36:199–205PubMedCrossRef Tsai MT, Lin DJ, Huang S et al (2012) Osteogenic differentiation is synergistically influenced by osteoinductive treatment and direct cell-cell contact between murine osteoblasts and mesenchymal stem cells. Int Orthop 36:199–205PubMedCrossRef
72.
go back to reference Ueno M, Urabe K, Naruse K et al (2011) Influence of internal fixator stiffness on murine fracture healing: two types of fracture healing lead to two distinct cellular events and FGF-2 expressions. Exp Anim 60:79–87PubMedCrossRef Ueno M, Urabe K, Naruse K et al (2011) Influence of internal fixator stiffness on murine fracture healing: two types of fracture healing lead to two distinct cellular events and FGF-2 expressions. Exp Anim 60:79–87PubMedCrossRef
73.
go back to reference Usas A, Huard J (2007) Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 28:5401–5406PubMedCrossRef Usas A, Huard J (2007) Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 28:5401–5406PubMedCrossRef
74.
go back to reference Weaver AS, Su YP, Begun DL et al (2010) The effects of axial displacement on fracture callus morphology and MSC homing depend on the timing of application. Bone 47:41–48PubMedCrossRef Weaver AS, Su YP, Begun DL et al (2010) The effects of axial displacement on fracture callus morphology and MSC homing depend on the timing of application. Bone 47:41–48PubMedCrossRef
75.
go back to reference Wislet-Gendebien S, Poulet C, Neirinckx V et al (2012) In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow. PLoS One 7:e46425PubMedCrossRef Wislet-Gendebien S, Poulet C, Neirinckx V et al (2012) In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow. PLoS One 7:e46425PubMedCrossRef
76.
go back to reference Wynn RF, Hart CA, Corradi-Perini C et al (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104:2643–2645PubMedCrossRef Wynn RF, Hart CA, Corradi-Perini C et al (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104:2643–2645PubMedCrossRef
77.
go back to reference Xia L, Xu Y, Chang Q et al (2011) Maxillary sinus floor elevation using BMP-2 and Nell-1 gene-modified bone marrow stromal cells and TCP in rabbits. Calcif Tissue Int 89:53–64PubMedCrossRef Xia L, Xu Y, Chang Q et al (2011) Maxillary sinus floor elevation using BMP-2 and Nell-1 gene-modified bone marrow stromal cells and TCP in rabbits. Calcif Tissue Int 89:53–64PubMedCrossRef
78.
go back to reference Xue J, Peng J, Yuan M et al (2011) NELL1 promotes high-quality bone regeneration in rat femoral distraction osteogenesis model. Bone 48:485–495PubMedCrossRef Xue J, Peng J, Yuan M et al (2011) NELL1 promotes high-quality bone regeneration in rat femoral distraction osteogenesis model. Bone 48:485–495PubMedCrossRef
79.
go back to reference Yu Z, Zhu T, Li C et al (2012) Improvement of intertrochanteric bone quality in osteoporotic female rats after injection of polylactic acid-polyglycolic acid copolymer/collagen type I microspheres combined with bone mesenchymal stem cells. Int Orthop 36:2163–2171PubMedCrossRef Yu Z, Zhu T, Li C et al (2012) Improvement of intertrochanteric bone quality in osteoporotic female rats after injection of polylactic acid-polyglycolic acid copolymer/collagen type I microspheres combined with bone mesenchymal stem cells. Int Orthop 36:2163–2171PubMedCrossRef
80.
go back to reference Zangi L, Margalit R, Reich-Zeliger S et al (2009) Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 27:2865–2874PubMedCrossRef Zangi L, Margalit R, Reich-Zeliger S et al (2009) Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 27:2865–2874PubMedCrossRef
81.
go back to reference Zhang X, Zara J, Siu RK et al (2010) The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res 89:865–878PubMedCrossRef Zhang X, Zara J, Siu RK et al (2010) The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res 89:865–878PubMedCrossRef
82.
go back to reference Zhang Y, Wang F, Chen J et al (2012) Bone marrow-derived mesenchymal stem cells versus bone marrow nucleated cells in the treatment of chondral defects. Int Orthop 36:1079–1086PubMedCrossRef Zhang Y, Wang F, Chen J et al (2012) Bone marrow-derived mesenchymal stem cells versus bone marrow nucleated cells in the treatment of chondral defects. Int Orthop 36:1079–1086PubMedCrossRef
83.
go back to reference Zhao Z, Watt C, Karystinou A et al (2011) Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. Eur Cell Mater 22:344–358PubMed Zhao Z, Watt C, Karystinou A et al (2011) Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. Eur Cell Mater 22:344–358PubMed
84.
go back to reference Zhi L, Chen C, Pang X et al (2011) Synergistic effect of recombinant human bone morphogenic protein-7 and osteogenic differentiation medium on human bone-marrow-derived mesenchymal stem cells in vitro. Int Orthop 35:1889–1895PubMedCrossRef Zhi L, Chen C, Pang X et al (2011) Synergistic effect of recombinant human bone morphogenic protein-7 and osteogenic differentiation medium on human bone-marrow-derived mesenchymal stem cells in vitro. Int Orthop 35:1889–1895PubMedCrossRef
85.
go back to reference Zhu H, Liu YL, Chen JD et al (2012) Effect of osteogenically and adipogenically differentiated bone mesenchymal stem cells from mouse on osteoclast formation. Zhongguo Shi Yan Xue Ye Xue Za Zhi 20:1187–1190PubMed Zhu H, Liu YL, Chen JD et al (2012) Effect of osteogenically and adipogenically differentiated bone mesenchymal stem cells from mouse on osteoclast formation. Zhongguo Shi Yan Xue Ye Xue Za Zhi 20:1187–1190PubMed
86.
go back to reference Zhu S, Song D, Jiang X et al (2011) Combined effects of recombinant human BMP-2 and Nell-1 on bone regeneration in rapid distraction osteogenesis of rabbit tibia. Injury 42:1467–1473PubMedCrossRef Zhu S, Song D, Jiang X et al (2011) Combined effects of recombinant human BMP-2 and Nell-1 on bone regeneration in rapid distraction osteogenesis of rabbit tibia. Injury 42:1467–1473PubMedCrossRef
87.
go back to reference Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedCrossRef Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedCrossRef
88.
go back to reference Zuo Q, Cui W, Liu F et al (2013) Co-cultivated mesenchymal stem cells support chondrocytic differentiation of articular chondrocytes. Int Orthop 37:747–752PubMedCrossRef Zuo Q, Cui W, Liu F et al (2013) Co-cultivated mesenchymal stem cells support chondrocytic differentiation of articular chondrocytes. Int Orthop 37:747–752PubMedCrossRef
Metadata
Title
Role of mesenchymal stem cells in bone regeneration and fracture repair: a review
Authors
Xin Wang
Yu Wang
Wenlong Gou
Qiang Lu
Jiang Peng
Shibi Lu
Publication date
01-12-2013
Publisher
Springer Berlin Heidelberg
Published in
International Orthopaedics / Issue 12/2013
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-013-2059-2

Other articles of this Issue 12/2013

International Orthopaedics 12/2013 Go to the issue