Skip to main content
Top
Published in: International Orthopaedics 11/2012

01-11-2012 | Original Paper

Treatment of deep articular talus lesions by matrix associated autologous chondrocyte implantation—results at five years

Authors: Sven Anders, Juergen Goetz, Thomas Schubert, Joachim Grifka, Jens Schaumburger

Published in: International Orthopaedics | Issue 11/2012

Login to get access

Abstract

Purpose

Treatment of focal full-thickness chondral or osteochondral defects of the talus remains a challenge. The aim of this study was to evaluate the postoperative success and the long-term efficacy of matrix associated autologous chondrocyte implantation in these defects.

Methods

Matrix associated autologous chondrocyte implantation (MACI) was applied in 22 consecutive patients (mean age 23.9 years) with full-thickness chondral or osteochondral lesions of the talus. The average defect-size was 1.94 cm² (range 1–6). In case of osteochondritis dissecans (n = 13) an autologous bone graft was performed simultaneously. Follow-ups were routinely scheduled up to 63.5 (±7.4) months, consisting of clinical evaluation and magnetic resonance imaging.

Results

The AOFAS score improved significantly from 70.1 to 87.9/92.6/93.5/95.0/95.5 and 95.3 points at three, six, 12, 24, 36 and 63.5 months, respectively. On a visual analogue scale, pain intensity decreased from 5.7 (±2.6) to 0.9 (±0.8) while subjective function increased from 5.3 (±2.3) to 8.9 (±0.9) at final follow-up (each p < 0.001). The Tegner score rose significantly from 2.4 (±1.2) to 4.7 (±0.6). The MOCART score improved from 62.6 (±19.4) at three months to 83.8 (±9.4) at final follow-up. No significant differences were found between lesions caused by osteochondritis dissecans or trauma and between first- or second-line treatments. For all scores, the most benefit was seen within the first 12 months with stable results afterwards. No major complications were noted.

Conclusions

Matrix associated autologous chondrocyte implantation is capable of significant and stable long-term improvement of pain and functional impairment caused by focal full-thickness chondral and osteochondral talus lesions.
Literature
1.
go back to reference Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18:238–246PubMedCrossRef Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18:238–246PubMedCrossRef
2.
go back to reference O’Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg Am 80:1795–1812PubMed O’Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg Am 80:1795–1812PubMed
3.
go back to reference Buckwalter JA, Lohmander S (1994) Operative treatment of osteoarthrosis. Current practice and future development. J Bone Joint Surg Am 76:1405–1418PubMed Buckwalter JA, Lohmander S (1994) Operative treatment of osteoarthrosis. Current practice and future development. J Bone Joint Surg Am 76:1405–1418PubMed
4.
go back to reference Giannini S, Vannini F (2004) Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int 25:168–175PubMed Giannini S, Vannini F (2004) Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int 25:168–175PubMed
5.
go back to reference Gautier E, Kolker D, Jakob RP (2002) Treatment of cartilage defects of the talus by autologous osteochondral grafts. J Bone Joint Surg Br 84:237–244PubMedCrossRef Gautier E, Kolker D, Jakob RP (2002) Treatment of cartilage defects of the talus by autologous osteochondral grafts. J Bone Joint Surg Br 84:237–244PubMedCrossRef
6.
go back to reference Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124PubMedCrossRef Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124PubMedCrossRef
7.
go back to reference Brittberg M (2010) Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med 38:1259–1271PubMedCrossRef Brittberg M (2010) Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med 38:1259–1271PubMedCrossRef
8.
go back to reference Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69PubMed Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69PubMed
9.
go back to reference Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M (1994) Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int 15:349–353PubMed Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M (1994) Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int 15:349–353PubMed
10.
go back to reference Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop 198:43–49PubMed Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop 198:43–49PubMed
11.
go back to reference Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23PubMedCrossRef Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23PubMedCrossRef
12.
go back to reference Petersen L, Brittberg M, Lindahl A (2003) Autologous chondrocyte transplantation of the ankle. Foot Ankle Clin 8:291–303PubMedCrossRef Petersen L, Brittberg M, Lindahl A (2003) Autologous chondrocyte transplantation of the ankle. Foot Ankle Clin 8:291–303PubMedCrossRef
13.
go back to reference Koulalis D, Schultz W, Heyden M (2002) Autologous chondrocyte transplantation for osteochondritis dissecans of the talus. Clin Orthop Relat Res 395:186–192 Koulalis D, Schultz W, Heyden M (2002) Autologous chondrocyte transplantation for osteochondritis dissecans of the talus. Clin Orthop Relat Res 395:186–192
14.
go back to reference Whittaker JP, Smith G, Makwana N, Roberts S, Harrison PE, Laing P, Richardson JB (2005) Early results of autologous chondrocyte implantation in the talus. J Bone Joint Surg Br 87:179–183PubMedCrossRef Whittaker JP, Smith G, Makwana N, Roberts S, Harrison PE, Laing P, Richardson JB (2005) Early results of autologous chondrocyte implantation in the talus. J Bone Joint Surg Br 87:179–183PubMedCrossRef
15.
go back to reference Baums MH, Heidrich G, Schultz W, Steckel H, Kahl E, Klinger HM (2006) Autologous chondrocyte transplantation for treating cartilage defects of the talus. J Bone Joint Surg Am 88:303–308PubMedCrossRef Baums MH, Heidrich G, Schultz W, Steckel H, Kahl E, Klinger HM (2006) Autologous chondrocyte transplantation for treating cartilage defects of the talus. J Bone Joint Surg Am 88:303–308PubMedCrossRef
16.
go back to reference Nam EK, Ferkel RD, Applegate GR (2009) Autologous chondrocyte implantation of the ankle: a 2- to 5-year follow-up. Am J Sports Med 37:274–284PubMedCrossRef Nam EK, Ferkel RD, Applegate GR (2009) Autologous chondrocyte implantation of the ankle: a 2- to 5-year follow-up. Am J Sports Med 37:274–284PubMedCrossRef
17.
go back to reference Giannini S, Battaglia M, Buda R, Cavallo M, Ruffilli A, Vannini F (2009) Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med 37(Suppl 1):112S–118SPubMedCrossRef Giannini S, Battaglia M, Buda R, Cavallo M, Ruffilli A, Vannini F (2009) Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med 37(Suppl 1):112S–118SPubMedCrossRef
18.
go back to reference Choi YS, Potter HG, Chun TJ (2008) MR imaging of cartilage repair in the knee and ankle. Radiographics 28:1043–1059PubMedCrossRef Choi YS, Potter HG, Chun TJ (2008) MR imaging of cartilage repair in the knee and ankle. Radiographics 28:1043–1059PubMedCrossRef
19.
go back to reference Aurich M, Bedi HS, Smith PJ, Rolauffs B, Muckley T, Clayton J, Blackney M (2011) Arthroscopic treatment of osteochondral lesions of the ankle with matrix-associated chondrocyte implantation: early clinical and magnetic resonance imaging results. Am J Sports Med 39:311–319PubMedCrossRef Aurich M, Bedi HS, Smith PJ, Rolauffs B, Muckley T, Clayton J, Blackney M (2011) Arthroscopic treatment of osteochondral lesions of the ankle with matrix-associated chondrocyte implantation: early clinical and magnetic resonance imaging results. Am J Sports Med 39:311–319PubMedCrossRef
20.
go back to reference Giannini S, Buda R, Faldini C, Vannini F, Bevoni R, Grandi G, Grigolo B, Berti L (2005) Surgical treatment of osteochondral lesions of the talus in young active patients. J Bone Joint Surg Am 87(Suppl 2):28–41PubMedCrossRef Giannini S, Buda R, Faldini C, Vannini F, Bevoni R, Grandi G, Grigolo B, Berti L (2005) Surgical treatment of osteochondral lesions of the talus in young active patients. J Bone Joint Surg Am 87(Suppl 2):28–41PubMedCrossRef
21.
go back to reference Giza E, Sullivan M, Ocel D, Lundeen G, Mitchell ME, Veris L, Walton J (2010) Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int 31:747–753PubMedCrossRef Giza E, Sullivan M, Ocel D, Lundeen G, Mitchell ME, Veris L, Walton J (2010) Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int 31:747–753PubMedCrossRef
22.
go back to reference Schneider TE, Karaikudi S (2009) Matrix-Induced Autologous Chondrocyte Implantation (MACI) grafting for osteochondral lesions of the talus. Foot Ankle Int 30:810–814PubMedCrossRef Schneider TE, Karaikudi S (2009) Matrix-Induced Autologous Chondrocyte Implantation (MACI) grafting for osteochondral lesions of the talus. Foot Ankle Int 30:810–814PubMedCrossRef
23.
go back to reference Lee KT, Lee YK, Young KW, Park SY, Kim JS (2012) Factors influencing result of autologous chondrocyte implantation in osteochondral lesion of the talus using second look arthroscopy. Scand J Med Sci Sports 22(4):510–515 Lee KT, Lee YK, Young KW, Park SY, Kim JS (2012) Factors influencing result of autologous chondrocyte implantation in osteochondral lesion of the talus using second look arthroscopy. Scand J Med Sci Sports 22(4):510–515
24.
go back to reference Giannini S, Buda R, Vannini F, Di Caprio F, Grigolo B (2008) Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: surgical technique and results. Am J Sports Med 36:873–880PubMedCrossRef Giannini S, Buda R, Vannini F, Di Caprio F, Grigolo B (2008) Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: surgical technique and results. Am J Sports Med 36:873–880PubMedCrossRef
25.
go back to reference Niemeyer P, Salzmann G, Schmal H, Mayr H, Sudkamp NP (2011) Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc. Oct 30. [Epub ahead of print] Niemeyer P, Salzmann G, Schmal H, Mayr H, Sudkamp NP (2011) Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc. Oct 30. [Epub ahead of print]
Metadata
Title
Treatment of deep articular talus lesions by matrix associated autologous chondrocyte implantation—results at five years
Authors
Sven Anders
Juergen Goetz
Thomas Schubert
Joachim Grifka
Jens Schaumburger
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
International Orthopaedics / Issue 11/2012
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-012-1635-1

Other articles of this Issue 11/2012

International Orthopaedics 11/2012 Go to the issue