Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 7/2016

01-07-2016 | Focussed Research Review

Lessons learned from cancer vaccine trials and target antigen choice

Author: Lisa H. Butterfield

Published in: Cancer Immunology, Immunotherapy | Issue 7/2016

Login to get access

Abstract

A wide variety of tumor antigens have been targeted in cancer immunotherapy studies. Traditionally, the focus has been on commonly overexpressed antigens shared across many patients and/or tumor types. As the field has progressed, the identity of human tumor rejection antigens has broadened. Immunologic monitoring of clinical trials has slowly elucidated candidate biomarkers of immune response and clinical response, and conversely, of immune dysfunction and suppression. We have utilized MART-1/Melan-A in our melanoma studies and observed a high frequency of immune responses and several significant clinical responses in patients vaccinated with this melanosomal protein. Alpha-fetoprotein is a shared, overexpressed tumor antigen and secreted glycoprotein that we have tested in hepatocellular cancer vaccines. Our recent studies have identified immunosuppressive and immune-skewing activities of this antigen. The choice of target antigen and its form can have unexpected effects.
Literature
2.
3.
go back to reference Finn OJ, Binder RJ, Brickner AG, Butterfield LH, Ferris RL, Kalinski P et al (2009) Human tumor antigens as targets of immunosurveillance and candidates for cancer vaccines. In: Gires O, Seliger B (eds) Tumor-associated antigens: identification, characterization and clinical applications. Wiley-VCH Verlag, GmbH & Co., Weinheim, pp 23–43 Finn OJ, Binder RJ, Brickner AG, Butterfield LH, Ferris RL, Kalinski P et al (2009) Human tumor antigens as targets of immunosurveillance and candidates for cancer vaccines. In: Gires O, Seliger B (eds) Tumor-associated antigens: identification, characterization and clinical applications. Wiley-VCH Verlag, GmbH & Co., Weinheim, pp 23–43
4.
go back to reference Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337. doi:10.1158/1078-0432.CCR-09-0737 CrossRefPubMed Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337. doi:10.​1158/​1078-0432.​CCR-09-0737 CrossRefPubMed
5.
go back to reference Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D et al (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9(3):998–1008PubMed Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D et al (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9(3):998–1008PubMed
6.
go back to reference Ribas A, Glaspy JA, Lee Y, Dissette VB, Seja E, Vu HT et al (2004) Role of dendritic cell phenotype, determinant spreading, and negative costimulatory blockade in dendritic cell-based melanoma immunotherapy. J Immunother 27(5):354–367CrossRefPubMed Ribas A, Glaspy JA, Lee Y, Dissette VB, Seja E, Vu HT et al (2004) Role of dendritic cell phenotype, determinant spreading, and negative costimulatory blockade in dendritic cell-based melanoma immunotherapy. J Immunother 27(5):354–367CrossRefPubMed
10.
go back to reference Ranieri E, Kierstead LS, Zarour H, Kirkwood JM, Lotze MT, Whiteside T et al (2000) Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest 29(2):121–125CrossRefPubMed Ranieri E, Kierstead LS, Zarour H, Kirkwood JM, Lotze MT, Whiteside T et al (2000) Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest 29(2):121–125CrossRefPubMed
11.
go back to reference Arthur JF, Butterfield LH, Roth MD, Bui LA, Kiertscher SM, Lau R et al (1997) A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 4(1):17–25PubMed Arthur JF, Butterfield LH, Roth MD, Bui LA, Kiertscher SM, Lau R et al (1997) A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 4(1):17–25PubMed
12.
go back to reference Ribas A, Butterfield LH, McBride WH, Jilani SM, Bui LA, Vollmer CM et al (1997) Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells. Cancer Res 57(14):2865–2869PubMed Ribas A, Butterfield LH, McBride WH, Jilani SM, Bui LA, Vollmer CM et al (1997) Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells. Cancer Res 57(14):2865–2869PubMed
13.
go back to reference Butterfield LH, Jilani SM, Chakraborty NG, Bui LA, Ribas A, Dissette VB et al (1998) Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. J Immunol 161(10):5607–5613PubMed Butterfield LH, Jilani SM, Chakraborty NG, Bui LA, Ribas A, Dissette VB et al (1998) Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. J Immunol 161(10):5607–5613PubMed
14.
go back to reference Ribas A, Butterfield LH, McBride WH, Dissette VB, Koh A, Vollmer CM et al (1999) Characterization of antitumor immunization to a defined melanoma antigen using genetically engineered murine dendritic cells. Cancer Gene Ther 6(6):523–536. doi:10.1038/sj.cgt.7700076 CrossRefPubMed Ribas A, Butterfield LH, McBride WH, Dissette VB, Koh A, Vollmer CM et al (1999) Characterization of antitumor immunization to a defined melanoma antigen using genetically engineered murine dendritic cells. Cancer Gene Ther 6(6):523–536. doi:10.​1038/​sj.​cgt.​7700076 CrossRefPubMed
15.
go back to reference Schumacher L, Ribas A, Dissette VB, McBride WH, Mukherji B, Economou JS et al (2004) Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J Immunother 27(3):191–200CrossRefPubMed Schumacher L, Ribas A, Dissette VB, McBride WH, Mukherji B, Economou JS et al (2004) Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J Immunother 27(3):191–200CrossRefPubMed
16.
go back to reference Liu Y, Daley S, Evdokimova VN, Zdobinski DD, Potter DM, Butterfield LH (2006) Hierarchy of alpha fetoprotein (AFP)-specific T cell responses in subjects with AFP-positive hepatocellular cancer. J Immunol 177(1):712–721CrossRefPubMedPubMedCentral Liu Y, Daley S, Evdokimova VN, Zdobinski DD, Potter DM, Butterfield LH (2006) Hierarchy of alpha fetoprotein (AFP)-specific T cell responses in subjects with AFP-positive hepatocellular cancer. J Immunol 177(1):712–721CrossRefPubMedPubMedCentral
17.
go back to reference Blalock LT, Landsberg J, Messmer M, Shi J, Pardee AD, Haskell R et al (2012) Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity. Oncoimmunology 1(3):287–357. doi:10.4161/onci.18628 CrossRefPubMedPubMedCentral Blalock LT, Landsberg J, Messmer M, Shi J, Pardee AD, Haskell R et al (2012) Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity. Oncoimmunology 1(3):287–357. doi:10.​4161/​onci.​18628 CrossRefPubMedPubMedCentral
20.
go back to reference Vujanovic L, Ballard W, Thorne SH, Vujanovic NL, Butterfield LH (2012) Adenovirus-engineered human dendritic cells induce natural killer cell chemotaxis via CXCL8/IL-8 and CXCL10/IP-10. Oncoimmunology 1(4):448–457CrossRefPubMedPubMedCentral Vujanovic L, Ballard W, Thorne SH, Vujanovic NL, Butterfield LH (2012) Adenovirus-engineered human dendritic cells induce natural killer cell chemotaxis via CXCL8/IL-8 and CXCL10/IP-10. Oncoimmunology 1(4):448–457CrossRefPubMedPubMedCentral
22.
23.
go back to reference Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF (2005) Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174(8):4465–4469CrossRefPubMed Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF (2005) Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174(8):4465–4469CrossRefPubMed
24.
go back to reference Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128. doi:10.1016/S0140-6736(12)61728-0 CrossRefPubMed Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128. doi:10.​1016/​S0140-6736(12)61728-0 CrossRefPubMed
28.
go back to reference Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T et al (2004) Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40(3):667–676. doi:10.1002/hep.20375 CrossRefPubMed Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T et al (2004) Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40(3):667–676. doi:10.​1002/​hep.​20375 CrossRefPubMed
32.
go back to reference Mizejewski GJ (2001) Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Maywood) 226(5):377–408 Mizejewski GJ (2001) Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Maywood) 226(5):377–408
33.
go back to reference Cohen BL, Orn A, Gronvik KO, Gidlund M, Wigzell H, Murgita RA (1986) Suppression by alpha-fetoprotein of murine natural killer cell activity stimulated in vitro and in vivo by interferon and interleukin 2. Scand J Immunol 23(2):211–223CrossRefPubMed Cohen BL, Orn A, Gronvik KO, Gidlund M, Wigzell H, Murgita RA (1986) Suppression by alpha-fetoprotein of murine natural killer cell activity stimulated in vitro and in vivo by interferon and interleukin 2. Scand J Immunol 23(2):211–223CrossRefPubMed
34.
go back to reference Yachnin S (1976) Demonstration of the inhibitory effect of human alpha-fetoprotein on in vitro transformation of human lymphocytes. Proc Natl Acad Sci USA 73(8):2857–2861CrossRefPubMedPubMedCentral Yachnin S (1976) Demonstration of the inhibitory effect of human alpha-fetoprotein on in vitro transformation of human lymphocytes. Proc Natl Acad Sci USA 73(8):2857–2861CrossRefPubMedPubMedCentral
35.
go back to reference Um SH, Mulhall C, Alisa A, Ives AR, Karani J, Williams R et al (2004) Alpha-fetoprotein impairs APC function and induces their apoptosis. J Immunol 173(3):1772–1778CrossRefPubMed Um SH, Mulhall C, Alisa A, Ives AR, Karani J, Williams R et al (2004) Alpha-fetoprotein impairs APC function and induces their apoptosis. J Immunol 173(3):1772–1778CrossRefPubMed
37.
go back to reference Butterfield LH, Koh A, Meng W, Vollmer CM, Ribas A, Dissette V et al (1999) Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein. Cancer Res 59(13):3134–3142PubMed Butterfield LH, Koh A, Meng W, Vollmer CM, Ribas A, Dissette V et al (1999) Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein. Cancer Res 59(13):3134–3142PubMed
38.
go back to reference Butterfield LH, Meng WS, Koh A, Vollmer CM, Ribas A, Dissette VB et al (2001) T cell responses to HLA-A*0201-restricted peptides derived from human alpha fetoprotein. J Immunol 166(8):5300–5308CrossRefPubMed Butterfield LH, Meng WS, Koh A, Vollmer CM, Ribas A, Dissette VB et al (2001) T cell responses to HLA-A*0201-restricted peptides derived from human alpha fetoprotein. J Immunol 166(8):5300–5308CrossRefPubMed
39.
go back to reference Butterfield LH, Ribas A, Meng WS, Dissette VB, Amarnani S, Vu HT et al (2003) T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin Cancer Res 9(16 Pt 1):5902–5908PubMed Butterfield LH, Ribas A, Meng WS, Dissette VB, Amarnani S, Vu HT et al (2003) T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin Cancer Res 9(16 Pt 1):5902–5908PubMed
40.
go back to reference Butterfield LH, Ribas A, Dissette VB, Lee Y, Yang JQ, De la Rocha P et al (2006) A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin Cancer Res 12(9):2817–2825. doi:10.1158/1078-0432.CCR-05-2856 CrossRefPubMed Butterfield LH, Ribas A, Dissette VB, Lee Y, Yang JQ, De la Rocha P et al (2006) A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin Cancer Res 12(9):2817–2825. doi:10.​1158/​1078-0432.​CCR-05-2856 CrossRefPubMed
45.
go back to reference Vujanovic NL, Polimeno L, Azzarone A, Francavilla A, Chambers WH, Starzl TE et al (1995) Changes of liver-resident NK cells during liver regeneration in rats. J Immunol 154(12):6324–6338PubMed Vujanovic NL, Polimeno L, Azzarone A, Francavilla A, Chambers WH, Starzl TE et al (1995) Changes of liver-resident NK cells during liver regeneration in rats. J Immunol 154(12):6324–6338PubMed
46.
go back to reference Taketomi A, Shimada M, Shirabe K, Kajiyama K, Gion T, Sugimachi K (1998) Natural killer cell activity in patients with hepatocellular carcinoma: a new prognostic indicator after hepatectomy. Cancer 83(1):58–63CrossRefPubMed Taketomi A, Shimada M, Shirabe K, Kajiyama K, Gion T, Sugimachi K (1998) Natural killer cell activity in patients with hepatocellular carcinoma: a new prognostic indicator after hepatectomy. Cancer 83(1):58–63CrossRefPubMed
47.
go back to reference Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S et al (2005) Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol 43(6):1013–1020. doi:10.1016/j.jhep.2005.05.026 CrossRefPubMed Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S et al (2005) Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol 43(6):1013–1020. doi:10.​1016/​j.​jhep.​2005.​05.​026 CrossRefPubMed
49.
go back to reference Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H et al (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3):799–807. doi:10.1002/hep.23054 CrossRefPubMed Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H et al (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3):799–807. doi:10.​1002/​hep.​23054 CrossRefPubMed
50.
go back to reference Cardoso E, Valdez G, Comini E, Matera L (1991) Effect of human alpha-fetoprotein on native and in vitro-stimulated NK activity. J Clin Lab Immunol 34(4):183–188PubMed Cardoso E, Valdez G, Comini E, Matera L (1991) Effect of human alpha-fetoprotein on native and in vitro-stimulated NK activity. J Clin Lab Immunol 34(4):183–188PubMed
Metadata
Title
Lessons learned from cancer vaccine trials and target antigen choice
Author
Lisa H. Butterfield
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 7/2016
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-016-1801-1

Other articles of this Issue 7/2016

Cancer Immunology, Immunotherapy 7/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine