Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 1/2015

01-01-2015 | Focussed Research Review

Somatically mutated tumor antigens in the quest for a more efficacious patient-oriented immunotherapy of cancer

Authors: Zlatko Trajanoski, Cristina Maccalli, Daniele Mennonna, Giulia Casorati, Giorgio Parmiani, Paolo Dellabona

Published in: Cancer Immunology, Immunotherapy | Issue 1/2015

Login to get access

Abstract

Although cancer immunotherapy shows efficacy with adoptive T cell therapy (ACT) and antibody-based immune checkpoint blockade, efficacious therapeutic vaccination of cancer patients with tumor-associated antigens (TAAs) remains largely unmet. Current cancer vaccines utilize nonmutated shared TAAs that may have suboptimal immunogenicity. Experimental evidence underscores the strong immunogenicity of unique TAAs derived from somatically mutated cancer proteins, whose massive characterization has been precluded until recently by technical limitations. The development of cost-effective, high-throughput DNA sequencing approaches makes now possible the rapid identification of all the somatic mutations contained in a cancer cell genome. This method, combined with robust bioinformatics platforms for T cell epitope prediction and established reverse immunology approaches, provides us with an integrated strategy to identify patient-specific unique TAAs in a relatively short time, compatible with their potential use in the clinic. Hence, it is now for the first time possible to quantitatively define the patient’s unique tumor antigenome and exploit it for vaccination, possibly in combination with ACT and/or immune checkpoint blockade to further increase immunotherapy efficacy.
Literature
1.
go back to reference Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nature Rev Cancer 14:135–146CrossRef Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nature Rev Cancer 14:135–146CrossRef
3.
go back to reference Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207PubMedCrossRef Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207PubMedCrossRef
4.
go back to reference Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A (2002) Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 94:805–818PubMedCrossRef Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A (2002) Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 94:805–818PubMedCrossRef
6.
go back to reference Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini JC, Romero P (2005) Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest. 115:739–746PubMedCentralPubMedCrossRef Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini JC, Romero P (2005) Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest. 115:739–746PubMedCentralPubMedCrossRef
7.
go back to reference Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422PubMedCrossRef Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422PubMedCrossRef
8.
go back to reference Rivoltini L, Canese P, Huber V et al (2005) Escape strategies and reasons for failure in the interaction between tumour cells and the immune system: how can we tilt the balance towards immune-mediated cancer control? Expert Opin Biol Ther. 5:463–476PubMedCrossRef Rivoltini L, Canese P, Huber V et al (2005) Escape strategies and reasons for failure in the interaction between tumour cells and the immune system: how can we tilt the balance towards immune-mediated cancer control? Expert Opin Biol Ther. 5:463–476PubMedCrossRef
9.
go back to reference Savage PA, Leventhal DS, Malchow S (2014) Shaping the repertoire of tumor-infiltrating effector and regulatory T cells. Immunol Rev 259:245–258PubMedCrossRef Savage PA, Leventhal DS, Malchow S (2014) Shaping the repertoire of tumor-infiltrating effector and regulatory T cells. Immunol Rev 259:245–258PubMedCrossRef
10.
go back to reference Mortarini R, Piris A, Maurichi A et al (2003) Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res 63:2535–2545PubMed Mortarini R, Piris A, Maurichi A et al (2003) Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res 63:2535–2545PubMed
11.
go back to reference Hailemichael Y, Dai Z, Jaffarzad N et al (2013) Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 19:465–472PubMedCentralPubMedCrossRef Hailemichael Y, Dai Z, Jaffarzad N et al (2013) Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 19:465–472PubMedCentralPubMedCrossRef
12.
go back to reference Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18:769–778PubMed Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18:769–778PubMed
13.
go back to reference Klein G, Sjogren HO, Klein E, Hellstrom KE (1960) Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res 20:1561–1572PubMed Klein G, Sjogren HO, Klein E, Hellstrom KE (1960) Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res 20:1561–1572PubMed
14.
go back to reference Mumberg D, Wick M, Schreiber H (1996) Unique tumor antigens redefined as mutant tumor-specific antigens. Semin Immunol 8:289–293PubMedCrossRef Mumberg D, Wick M, Schreiber H (1996) Unique tumor antigens redefined as mutant tumor-specific antigens. Semin Immunol 8:289–293PubMedCrossRef
15.
go back to reference Lurquin C, Van Pel A, Mariame B, De Plaen E, Szikora JP, Janssens C, Reddehase MJ, Lejeune J, Boon T (1989) Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58:293–303PubMedCrossRef Lurquin C, Van Pel A, Mariame B, De Plaen E, Szikora JP, Janssens C, Reddehase MJ, Lejeune J, Boon T (1989) Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58:293–303PubMedCrossRef
16.
go back to reference Foley EJ (1953) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 13:835–837PubMed Foley EJ (1953) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 13:835–837PubMed
17.
go back to reference Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425PubMedCrossRef Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425PubMedCrossRef
18.
go back to reference Srivastava PK, Duan F (2013) Harnessing the antigenic fingerprint of each individual cancer for immunotherapy of human cancer: genomics shows a new way and its challenges. Cancer Immunol Immunother 62:967–974PubMedCentralPubMedCrossRef Srivastava PK, Duan F (2013) Harnessing the antigenic fingerprint of each individual cancer for immunotherapy of human cancer: genomics shows a new way and its challenges. Cancer Immunol Immunother 62:967–974PubMedCentralPubMedCrossRef
19.
go back to reference Castelli C, Ciupitu AM, Rini F, Rivoltini L, Mazzocchi A, Kiessling R, Parmiani G (2001) Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res 61:222–227PubMed Castelli C, Ciupitu AM, Rini F, Rivoltini L, Mazzocchi A, Kiessling R, Parmiani G (2001) Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res 61:222–227PubMed
20.
go back to reference Rivoltini L, Castelli C, Carrabba M et al (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol. 171:3467–3474PubMedCrossRef Rivoltini L, Castelli C, Carrabba M et al (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol. 171:3467–3474PubMedCrossRef
21.
go back to reference Mazzaferro V, Coppa J, Carrabba MG et al (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235–3245PubMed Mazzaferro V, Coppa J, Carrabba MG et al (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235–3245PubMed
22.
go back to reference Parmiani G, Testori A, Maio M et al (2004) Heat shock proteins and their use as anticancer vaccines. Clin Cancer Res 10:8142–8146PubMedCrossRef Parmiani G, Testori A, Maio M et al (2004) Heat shock proteins and their use as anticancer vaccines. Clin Cancer Res 10:8142–8146PubMedCrossRef
23.
go back to reference Wolfel T, Hauer M, Schneider J et al (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284PubMedCrossRef Wolfel T, Hauer M, Schneider J et al (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284PubMedCrossRef
24.
go back to reference Coulie PG, Lehmann F, Lethe B, Herman J, Lurquin C, Andrawiss M, Boon T (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92:7976–7980PubMedCentralPubMedCrossRef Coulie PG, Lehmann F, Lethe B, Herman J, Lurquin C, Andrawiss M, Boon T (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92:7976–7980PubMedCentralPubMedCrossRef
26.
27.
29.
go back to reference Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedCentralPubMed Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedCentralPubMed
30.
go back to reference Thomas RK, Baker AC, Debiasi RM et al (2007) High-throughput oncogene mutation profiling in human cancer. Nat Genet 39:347–351PubMedCrossRef Thomas RK, Baker AC, Debiasi RM et al (2007) High-throughput oncogene mutation profiling in human cancer. Nat Genet 39:347–351PubMedCrossRef
32.
go back to reference Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337CrossRef Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337CrossRef
33.
go back to reference Dudley ME, Roopenian DC (1996) Loss of a unique tumor antigen by cytotoxic T lymphocyte immunoselection from a 3-methylcholanthrene-induced mouse sarcoma reveals secondary unique and shared antigens. J Exp Med 184:441–447PubMedCrossRef Dudley ME, Roopenian DC (1996) Loss of a unique tumor antigen by cytotoxic T lymphocyte immunoselection from a 3-methylcholanthrene-induced mouse sarcoma reveals secondary unique and shared antigens. J Exp Med 184:441–447PubMedCrossRef
34.
go back to reference Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, Wolfel C, Huber C, Wolfel T (2005) The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 102:16013–16018PubMedCentralPubMedCrossRef Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, Wolfel C, Huber C, Wolfel T (2005) The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 102:16013–16018PubMedCentralPubMedCrossRef
35.
go back to reference Anichini A, Mortarini R, Maccalli C, Squarcina P, Fleischhauer K, Mascheroni L, Parmiani G (1996) Cytotoxic T cells directed to tumor antigens not expressed on normal melanocytes dominate HLA-A2.1-restricted immune repertoire to melanoma. J Immunol. 156:208–217PubMed Anichini A, Mortarini R, Maccalli C, Squarcina P, Fleischhauer K, Mascheroni L, Parmiani G (1996) Cytotoxic T cells directed to tumor antigens not expressed on normal melanocytes dominate HLA-A2.1-restricted immune repertoire to melanoma. J Immunol. 156:208–217PubMed
36.
go back to reference Parmiani G, De Filippo A, Novellino L, Castelli C (2007) Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol. 178:1975–1979PubMedCrossRef Parmiani G, De Filippo A, Novellino L, Castelli C (2007) Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol. 178:1975–1979PubMedCrossRef
37.
go back to reference Robbins PF, Lu YC, El-Gamil M et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–752PubMedCentralPubMedCrossRef Robbins PF, Lu YC, El-Gamil M et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–752PubMedCentralPubMedCrossRef
38.
go back to reference van Rooij N, van Buuren MM, Philips D et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31:439–442CrossRef van Rooij N, van Buuren MM, Philips D et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31:439–442CrossRef
39.
go back to reference Tran E, Turcotte S, Gros A et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T Cells in a patient with epithelial cancer. Science 344:641–645PubMedCrossRef Tran E, Turcotte S, Gros A et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T Cells in a patient with epithelial cancer. Science 344:641–645PubMedCrossRef
40.
go back to reference Matsushita H, Vesely MD, Koboldt DC et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404PubMedCrossRef Matsushita H, Vesely MD, Koboldt DC et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404PubMedCrossRef
41.
go back to reference Thornton AM, Shevach EM (2000) Suppressor effector function of CD4 + CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 164:183–190PubMedCrossRef Thornton AM, Shevach EM (2000) Suppressor effector function of CD4 + CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 164:183–190PubMedCrossRef
42.
go back to reference von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6:338–344CrossRef von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6:338–344CrossRef
43.
go back to reference Bui JD, Uppaluri R, Hsieh CS, Schreiber RD (2006) Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res 66:7301–7309PubMedCrossRef Bui JD, Uppaluri R, Hsieh CS, Schreiber RD (2006) Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res 66:7301–7309PubMedCrossRef
44.
go back to reference Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nature Rev Cancer. 12:252–264CrossRef Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nature Rev Cancer. 12:252–264CrossRef
45.
46.
47.
go back to reference Thomas RK, Nickerson E, Simons JF et al (2006) Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 12:852–855PubMedCrossRef Thomas RK, Nickerson E, Simons JF et al (2006) Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 12:852–855PubMedCrossRef
49.
go back to reference Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509–W512PubMedCentralPubMedCrossRef Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509–W512PubMedCentralPubMedCrossRef
50.
go back to reference Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4:e1000107PubMedCentralPubMedCrossRef Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4:e1000107PubMedCentralPubMedCrossRef
51.
go back to reference Castle JC, Kreiter S, Diekmann J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72:1081–1091PubMedCrossRef Castle JC, Kreiter S, Diekmann J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72:1081–1091PubMedCrossRef
52.
go back to reference Rajasagi M, Shukla SA, Fritsch EF et al (2014) Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124:453–462PubMedCrossRef Rajasagi M, Shukla SA, Fritsch EF et al (2014) Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124:453–462PubMedCrossRef
53.
go back to reference Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B, Allison JP (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 68:889–892PubMedCrossRef Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B, Allison JP (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 68:889–892PubMedCrossRef
54.
go back to reference Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ (2014) HLA-binding properties of tumor neoepitopes in humans. Cancer Immunol Res. 2:522–529PubMedCrossRef Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ (2014) HLA-binding properties of tumor neoepitopes in humans. Cancer Immunol Res. 2:522–529PubMedCrossRef
55.
go back to reference Bindea G, Mlecnik B, Tosolini M et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–795PubMedCrossRef Bindea G, Mlecnik B, Tosolini M et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–795PubMedCrossRef
56.
go back to reference Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRef Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRef
57.
go back to reference Charoentong P, Angelova M, Efremova M, Gallasch R, Hackl H, Galon J, Trajanoski Z (2012) Bioinformatics for cancer immunology and immunotherapy. Cancer Immunol Immunother 61:1885–1903PubMedCentralPubMedCrossRef Charoentong P, Angelova M, Efremova M, Gallasch R, Hackl H, Galon J, Trajanoski Z (2012) Bioinformatics for cancer immunology and immunotherapy. Cancer Immunol Immunother 61:1885–1903PubMedCentralPubMedCrossRef
58.
go back to reference Volonte A, Di Tomaso T, Spinelli M et al (2014) Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. J Immunol. 192:523–532PubMedCrossRef Volonte A, Di Tomaso T, Spinelli M et al (2014) Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. J Immunol. 192:523–532PubMedCrossRef
Metadata
Title
Somatically mutated tumor antigens in the quest for a more efficacious patient-oriented immunotherapy of cancer
Authors
Zlatko Trajanoski
Cristina Maccalli
Daniele Mennonna
Giulia Casorati
Giorgio Parmiani
Paolo Dellabona
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 1/2015
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-014-1599-7

Other articles of this Issue 1/2015

Cancer Immunology, Immunotherapy 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine