Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 9/2014

01-09-2014 | Focussed Research Review

Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula

Authors: Sandra Van Lint, Sofie Wilgenhof, Carlo Heirman, Jurgen Corthals, Karine Breckpot, Aude Bonehill, Bart Neyns, Kris Thielemans

Published in: Cancer Immunology, Immunotherapy | Issue 9/2014

Login to get access

Abstract

Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. In this regard, one of the major focuses of cancer immunotherapy has been the design of vaccines promoting strong tumor-specific cytotoxic T lymphocyte responses in cancer patients. Here, dendritic cells (DCs) play a pivotal role as they are regarded as nature’s adjuvant and as such have become the natural agents for antigen delivery in order to finally elicit strong T cell responses (Villadangos and Schnorrer in Nat Rev Immunol 7:543–555, 2007; Melief in Immunity 29:372–383, 2008; Palucka and Banchereau in Nat Rev Cancer 12:265–277, 2012; Vacchelli et al. in Oncoimmunology 2:e25771, 2013; Galluzzi et al. in Oncoimmunology 1:1111–1134, 2012). Therefore, many investigators are actively pursuing the use of DCs as an efficient way of inducing anticancer immune responses. Nowadays, DCs can be generated at a large scale in closed systems, yielding sufficient numbers of cells for clinical application. In addition, with the identification of tumor-associated antigens, which are either selectively or preferentially expressed by tumors, a whole range of strategies using DCs for immunotherapy have been designed and tested in clinical studies. Despite the evidence that DCs loaded with tumor-associated antigens can elicit immune responses in vivo, clinical responses remained disappointingly low. Therefore, optimization of the cellular product and route of administration was urgently needed. Here, we review the path we have followed in the development of TriMixDC-MEL, a potent DC-based cellular therapy, discussing its development as well as further modifications and applications.
Literature
1.
go back to reference Villadangos JA, Schnorrer P (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7:543–555PubMed Villadangos JA, Schnorrer P (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7:543–555PubMed
5.
6.
go back to reference Jonuleit H, Giesecke-Tuettenberg A, Tüting T et al (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93:243–251PubMed Jonuleit H, Giesecke-Tuettenberg A, Tüting T et al (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93:243–251PubMed
7.
go back to reference De Vries IJM, Lesterhuis WJ, Scharenborg NM et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100PubMed De Vries IJM, Lesterhuis WJ, Scharenborg NM et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100PubMed
8.
go back to reference Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99:351–358PubMedCentralCrossRefPubMed Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99:351–358PubMedCentralCrossRefPubMed
9.
go back to reference Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449CrossRefPubMed Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449CrossRefPubMed
10.
go back to reference Cools N, Van Tendeloo VFI, Smits ELJM et al (2008) Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. J Cell Mol Med 12:690–700PubMed Cools N, Van Tendeloo VFI, Smits ELJM et al (2008) Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. J Cell Mol Med 12:690–700PubMed
12.
go back to reference Jonuleit H, Kühn U, Müller G et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142CrossRefPubMed Jonuleit H, Kühn U, Müller G et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142CrossRefPubMed
13.
go back to reference Mailliard RB, Wankowicz-Kalinska A, Cai Q et al (2004) Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937CrossRefPubMed Mailliard RB, Wankowicz-Kalinska A, Cai Q et al (2004) Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937CrossRefPubMed
14.
go back to reference Vonderheide RH, Flaherty KT, Khalil M et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25:876–883CrossRefPubMed Vonderheide RH, Flaherty KT, Khalil M et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25:876–883CrossRefPubMed
15.
go back to reference Turner JG, Rakhmilevich AL, Burdelya L et al (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 166:89–94CrossRefPubMed Turner JG, Rakhmilevich AL, Burdelya L et al (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 166:89–94CrossRefPubMed
16.
go back to reference Nair S, McLaughlin C, Weizer A et al (2003) Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J Immunol 171:6275–6282CrossRefPubMed Nair S, McLaughlin C, Weizer A et al (2003) Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J Immunol 171:6275–6282CrossRefPubMed
17.
go back to reference Adema GJ, de Vries IJM, Punt CJA, Figdor CG (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17:170–174CrossRefPubMed Adema GJ, de Vries IJM, Punt CJA, Figdor CG (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17:170–174CrossRefPubMed
18.
go back to reference Calderhead DM, DeBenedette MA, Ketteringham H et al (2008) Cytokine maturation followed by CD40L mRNA electroporation results in a clinically relevant dendritic cell product capable of inducing a potent proinflammatory CTL response. J Immunother 31:731–741CrossRefPubMed Calderhead DM, DeBenedette MA, Ketteringham H et al (2008) Cytokine maturation followed by CD40L mRNA electroporation results in a clinically relevant dendritic cell product capable of inducing a potent proinflammatory CTL response. J Immunother 31:731–741CrossRefPubMed
19.
go back to reference DeBenedette MA, Calderhead DM, Tcherepanova IY et al (2011) Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother 34:45–57CrossRefPubMed DeBenedette MA, Calderhead DM, Tcherepanova IY et al (2011) Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother 34:45–57CrossRefPubMed
20.
go back to reference Bonehill A, Tuyaerts S, Van Nuffel AMT et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180CrossRefPubMed Bonehill A, Tuyaerts S, Van Nuffel AMT et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180CrossRefPubMed
21.
go back to reference Kikuchi T, Moore MA, Crystal RG (2000) Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 96:91–99PubMed Kikuchi T, Moore MA, Crystal RG (2000) Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 96:91–99PubMed
22.
go back to reference Cisco RM, Abdel-Wahab Z, Dannull J et al (2004) Induction of human dendritic cell maturation using transfection with RNA encoding a dominant positive toll-like receptor 4. J Immunol 172:7162–7168CrossRefPubMed Cisco RM, Abdel-Wahab Z, Dannull J et al (2004) Induction of human dendritic cell maturation using transfection with RNA encoding a dominant positive toll-like receptor 4. J Immunol 172:7162–7168CrossRefPubMed
23.
go back to reference Borst J, Hendriks J, Xiao Y (2005) CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol 17:275–281CrossRefPubMed Borst J, Hendriks J, Xiao Y (2005) CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol 17:275–281CrossRefPubMed
24.
go back to reference Van Lint S, Van Nuffel AM, Wilgenhof S, et al. (2013) Priming of cytotoxic T lymphocyte responses by dendritic cells: induction of potent anti-tumor immune responses. Cytotoxic T lymphocytes Mech Dev Dis, Horizons i. Nova Science Publishers, p volume 51 Van Lint S, Van Nuffel AM, Wilgenhof S, et al. (2013) Priming of cytotoxic T lymphocyte responses by dendritic cells: induction of potent anti-tumor immune responses. Cytotoxic T lymphocytes Mech Dev Dis, Horizons i. Nova Science Publishers, p volume 51
25.
go back to reference Langenkamp A, Messi M, Lanzavecchia A, Sallusto F (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1:311–316CrossRefPubMed Langenkamp A, Messi M, Lanzavecchia A, Sallusto F (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1:311–316CrossRefPubMed
26.
go back to reference Bonehill A, Van Nuffel AMT, Corthals J et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375CrossRefPubMed Bonehill A, Van Nuffel AMT, Corthals J et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375CrossRefPubMed
27.
go back to reference Wilgenhof S, Van Nuffel AMT, Corthals J et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34:448–456CrossRefPubMed Wilgenhof S, Van Nuffel AMT, Corthals J et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34:448–456CrossRefPubMed
28.
go back to reference Pen JJ, De Keersmaecker B, Maenhout SK et al (2013) Modulation of regulatory T cell function by monocyte-derived dendritic cells matured through electroporation with mRNA encoding CD40 ligand, constitutively active TLR4, and CD70. J Immunol 191:1976–1983CrossRefPubMed Pen JJ, De Keersmaecker B, Maenhout SK et al (2013) Modulation of regulatory T cell function by monocyte-derived dendritic cells matured through electroporation with mRNA encoding CD40 ligand, constitutively active TLR4, and CD70. J Immunol 191:1976–1983CrossRefPubMed
29.
go back to reference Fong L, Brockstedt D, Benike C et al (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 166:4254–4259CrossRefPubMed Fong L, Brockstedt D, Benike C et al (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 166:4254–4259CrossRefPubMed
30.
go back to reference Mullins DW, Sheasley SL, Ream RM et al (2003) Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J Exp Med 198:1023–1034PubMedCentralCrossRefPubMed Mullins DW, Sheasley SL, Ream RM et al (2003) Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J Exp Med 198:1023–1034PubMedCentralCrossRefPubMed
31.
go back to reference Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422CrossRefPubMed Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422CrossRefPubMed
32.
go back to reference Wilgenhof S, Van Nuffel AMT, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693CrossRefPubMed Wilgenhof S, Van Nuffel AMT, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693CrossRefPubMed
33.
go back to reference Van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied. J Exp Med 190:355–366PubMedCentralCrossRefPubMed Van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied. J Exp Med 190:355–366PubMedCentralCrossRefPubMed
34.
go back to reference Neyns B, Wilgenhof S, Van Nuffel AMT et al (2011) A phase I clinical trial on the combined intravenous (IV) and intradermal (ID) administration of autologous TriMix-DC cellular therapy in patients with pretreated melanoma (TriMixIDIV). ASCO Meet Abstr 29:2519 Neyns B, Wilgenhof S, Van Nuffel AMT et al (2011) A phase I clinical trial on the combined intravenous (IV) and intradermal (ID) administration of autologous TriMix-DC cellular therapy in patients with pretreated melanoma (TriMixIDIV). ASCO Meet Abstr 29:2519
35.
go back to reference Van Lint S, Heirman C, Thielemans K, Breckpot K (2013) mRNA: from a chemical blueprint for protein production to an off-the-shelf therapeutic. Hum Vaccin Immunother 9(2):265–274PubMedCentralCrossRefPubMed Van Lint S, Heirman C, Thielemans K, Breckpot K (2013) mRNA: from a chemical blueprint for protein production to an off-the-shelf therapeutic. Hum Vaccin Immunother 9(2):265–274PubMedCentralCrossRefPubMed
36.
go back to reference Van Lint S, Goyvaerts C, Maenhout S et al (2012) Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 72:1661–1671CrossRefPubMed Van Lint S, Goyvaerts C, Maenhout S et al (2012) Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 72:1661–1671CrossRefPubMed
37.
go back to reference Kuhn AN, Diken M, Kreiter S et al (2011) Determinants of intracellular RNA pharmacokinetics: implications for RNA-based immunotherapeutics. RNA Biol 8:35–43CrossRefPubMed Kuhn AN, Diken M, Kreiter S et al (2011) Determinants of intracellular RNA pharmacokinetics: implications for RNA-based immunotherapeutics. RNA Biol 8:35–43CrossRefPubMed
39.
go back to reference Diken M, Kreiter S, Selmi A et al (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702–708CrossRefPubMed Diken M, Kreiter S, Selmi A et al (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702–708CrossRefPubMed
40.
go back to reference Kreiter S, Diken M, Selmi A et al (2011) Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 23:399–406CrossRefPubMed Kreiter S, Diken M, Selmi A et al (2011) Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 23:399–406CrossRefPubMed
41.
go back to reference Pascolo S (2006) Vaccination with messenger RNA. Methods Mol Med 127:23–40PubMed Pascolo S (2006) Vaccination with messenger RNA. Methods Mol Med 127:23–40PubMed
44.
go back to reference Kuhn AN, Beißert T, Simon P et al (2012) mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther 12:347–361CrossRefPubMed Kuhn AN, Beißert T, Simon P et al (2012) mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther 12:347–361CrossRefPubMed
45.
46.
47.
go back to reference Castle JC, Kreiter S, Diekmann J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72:1081–1091CrossRefPubMed Castle JC, Kreiter S, Diekmann J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72:1081–1091CrossRefPubMed
48.
49.
go back to reference Britten CM, Singh-Jasuja H, Flamion B et al (2013) The regulatory landscape for actively personalized cancer immunotherapies. Nat Biotechnol 31:880–882CrossRefPubMed Britten CM, Singh-Jasuja H, Flamion B et al (2013) The regulatory landscape for actively personalized cancer immunotherapies. Nat Biotechnol 31:880–882CrossRefPubMed
50.
go back to reference Le Dieu R, Taussig DC, Ramsay AG et al (2009) Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114:3909–3916PubMedCentralCrossRefPubMed Le Dieu R, Taussig DC, Ramsay AG et al (2009) Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114:3909–3916PubMedCentralCrossRefPubMed
51.
go back to reference Ramsay AG, Clear AJ, Kelly G et al (2009) Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood 114:4713–4720PubMedCentralCrossRefPubMed Ramsay AG, Clear AJ, Kelly G et al (2009) Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood 114:4713–4720PubMedCentralCrossRefPubMed
52.
go back to reference Ramsay AG, Johnson AJ, Lee AM et al (2008) Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118:2427–2437PubMedCentralPubMed Ramsay AG, Johnson AJ, Lee AM et al (2008) Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118:2427–2437PubMedCentralPubMed
53.
54.
55.
56.
go back to reference Pruitt SK, Boczkowski D, de Rosa N et al (2011) Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol 41:3553–3563CrossRefPubMed Pruitt SK, Boczkowski D, de Rosa N et al (2011) Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol 41:3553–3563CrossRefPubMed
Metadata
Title
Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula
Authors
Sandra Van Lint
Sofie Wilgenhof
Carlo Heirman
Jurgen Corthals
Karine Breckpot
Aude Bonehill
Bart Neyns
Kris Thielemans
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 9/2014
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-014-1558-3

Other articles of this Issue 9/2014

Cancer Immunology, Immunotherapy 9/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine