Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 6/2011

01-06-2011 | Original Article

Nitric oxide short-circuits interleukin-12-mediated tumor regression

Authors: Nejat K. Egilmez, Jamie L. Harden, Lauren P. Virtuoso, Reto A. Schwendener, Mehmet O. Kilinc

Published in: Cancer Immunology, Immunotherapy | Issue 6/2011

Login to get access

Abstract

Interleukin-12 (IL-12) can promote tumor regression via activation of multiple lymphocytic and myelocytic effectors. Whereas the cytotoxic mechanisms employed by T/NK/NKT cells in IL-12-mediated tumor kill are well defined, the antitumor role of macrophage-produced cytotoxic metabolites has been more controversial. To this end, we investigated the specific role of nitric oxide (NO), a major macrophage effector molecule, in post-IL-12 tumor regression. Analysis of tumors following a single intratumoral injection of slow-release IL-12 microspheres showed an IFNγ-dependent sevenfold increase in inducible nitric oxide synthase (iNOS) expression within 48 h. Flow cytometric analysis of tumor-resident leukocytes and in vivo depletion studies identified CD11b+ F4/80+ Gr1lo macrophages as the primary source of iNOS. Blocking of post-therapy iNOS activity with N-nitro-l-arginine methyl ester (L-NAME) dramatically enhanced tumor suppression revealing the inhibitory effect of NO on IL-12-driven antitumor immunity. Superior tumor regression in mice receiving combination treatment was associated with enhanced survival and proliferation of activated tumor-resident CD8+ T-effector/memory cells (Tem). These findings demonstrate that macrophage-produced NO negatively regulates the antitumor activity of IL-12 via its detrimental effects on CD8+ T cells and identify L-NAME as a potent adjuvant in IL-12 therapy of cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146PubMedCrossRef Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146PubMedCrossRef
2.
go back to reference Tsung K, Meko JB, Peplinski GR, Tsung YL, Norton JA (1997) IL-12 induces T helper 1-directed antitumor response. J Immunol 158:3359–3365PubMed Tsung K, Meko JB, Peplinski GR, Tsung YL, Norton JA (1997) IL-12 induces T helper 1-directed antitumor response. J Immunol 158:3359–3365PubMed
3.
go back to reference Tsung K, Dolan JP, Tsung YL, Norton JA (2002) Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res 62:5069–5075PubMed Tsung K, Dolan JP, Tsung YL, Norton JA (2002) Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res 62:5069–5075PubMed
4.
go back to reference Hess SD, Egilmez NK, Bailey N, Anderson TM, Mathiowitz E, Bernstein SH, Bankert RB (2003) Human CD4+ T cells present within the microenvironment of human lung tumors are mobilized by the local and sustained release of IL-12 to kill tumors in situ by indirect effects of IFN-γ. J Immunol 170:400–412PubMed Hess SD, Egilmez NK, Bailey N, Anderson TM, Mathiowitz E, Bernstein SH, Bankert RB (2003) Human CD4+ T cells present within the microenvironment of human lung tumors are mobilized by the local and sustained release of IL-12 to kill tumors in situ by indirect effects of IFN-γ. J Immunol 170:400–412PubMed
5.
go back to reference Watkins SK, Li B, Richardson KS, Head K, Egilmez NK, Zeng Q, Suttles J, Stout RD (2009) Rapid release of cytoplasmic IL-15 from tumor-associated macrophages is an initial and critical event in IL-12 initiated tumor regression. Eur J Immunol 39:1–19CrossRef Watkins SK, Li B, Richardson KS, Head K, Egilmez NK, Zeng Q, Suttles J, Stout RD (2009) Rapid release of cytoplasmic IL-15 from tumor-associated macrophages is an initial and critical event in IL-12 initiated tumor regression. Eur J Immunol 39:1–19CrossRef
6.
go back to reference MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350PubMedCrossRef MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350PubMedCrossRef
7.
go back to reference Mocellin S, Bronte V, Nitti D (2007) Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 27:317–352PubMedCrossRef Mocellin S, Bronte V, Nitti D (2007) Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 27:317–352PubMedCrossRef
8.
go back to reference Paradise WA, Vesper BJ, Goel A, Waltonen JD, Altman KW, Haines GK III, Radosevich JA (2010) Nitric oxide: perspectives and emerging studies of a well known cytotoxin. Int J Mol Sci 11:2715–2745. doi:10.3390/ijms11072715 PubMedCrossRef Paradise WA, Vesper BJ, Goel A, Waltonen JD, Altman KW, Haines GK III, Radosevich JA (2010) Nitric oxide: perspectives and emerging studies of a well known cytotoxin. Int J Mol Sci 11:2715–2745. doi:10.​3390/​ijms11072715 PubMedCrossRef
9.
go back to reference Morbidelli L, Donnini S, Ziche M (2004) Role of nitric oxide in tumor angiogenesis. Cancer Treat Res 117:155–167PubMedCrossRef Morbidelli L, Donnini S, Ziche M (2004) Role of nitric oxide in tumor angiogenesis. Cancer Treat Res 117:155–167PubMedCrossRef
10.
go back to reference Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nature Rev Cancer 6:521–534CrossRef Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nature Rev Cancer 6:521–534CrossRef
11.
go back to reference Siegert A, Rosenberg C, Schmitt WD, Denkert C, Hauptmann S (2002) Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. Br J Cancer 86:1310–1315PubMedCrossRef Siegert A, Rosenberg C, Schmitt WD, Denkert C, Hauptmann S (2002) Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. Br J Cancer 86:1310–1315PubMedCrossRef
12.
go back to reference Jadeski LC, Chakraborty C, Lala PK (2003) Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer 106:496–504PubMedCrossRef Jadeski LC, Chakraborty C, Lala PK (2003) Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer 106:496–504PubMedCrossRef
13.
go back to reference Kurzawa Koblish H, Hunter CA, Wysocka M, Trinchieri G, Lee WMF (1998) Immune suppression by recombinant interleukin (rIL)-12 involves interferon γ induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J Exp Med 188:1603–1610CrossRef Kurzawa Koblish H, Hunter CA, Wysocka M, Trinchieri G, Lee WMF (1998) Immune suppression by recombinant interleukin (rIL)-12 involves interferon γ induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J Exp Med 188:1603–1610CrossRef
14.
go back to reference Medot-Pirenne M, Heilman MJ, Saxena M, McDermott PE, Mills CD (1999) Augmentation of an antitumor CTL response in vivo by inhibition of suppressor macrophage nitric oxide. J Immunol 163:587–5882 Medot-Pirenne M, Heilman MJ, Saxena M, McDermott PE, Mills CD (1999) Augmentation of an antitumor CTL response in vivo by inhibition of suppressor macrophage nitric oxide. J Immunol 163:587–5882
15.
go back to reference Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695PubMed Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695PubMed
16.
go back to reference McLean M, Wallace HL, Sharma A, Hill HC, Sabel MS, Egilmez NK (2004) A murine surgical metastasis model for the evaluation of anti-cancer strategies. Clin Exp Metastasis 21(4):363–369PubMedCrossRef McLean M, Wallace HL, Sharma A, Hill HC, Sabel MS, Egilmez NK (2004) A murine surgical metastasis model for the evaluation of anti-cancer strategies. Clin Exp Metastasis 21(4):363–369PubMedCrossRef
17.
go back to reference Kilinc MO, Aulakh KS, Nair RE, Jones SA II, Alard P, Kosiewicz MM, Egilmez NK (2006) Reversing tumor immune suppression with intra-tumoral IL-12: activation of tumor-associated T-effector/memory cells, induction of T-suppressor apoptosis and infiltration of CD8+ T-effectors. J Immunol 177:6962–6973PubMed Kilinc MO, Aulakh KS, Nair RE, Jones SA II, Alard P, Kosiewicz MM, Egilmez NK (2006) Reversing tumor immune suppression with intra-tumoral IL-12: activation of tumor-associated T-effector/memory cells, induction of T-suppressor apoptosis and infiltration of CD8+ T-effectors. J Immunol 177:6962–6973PubMed
18.
go back to reference Nair RE, Kilinc MO, Jones SA, Egilmez NK (2006) Chronic immune therapy induces a progressive increase in intra-tumoral T-suppressor activity and a concurrent loss of tumor-specific CD8+ T-effectors in her-2/neu transgenic mice bearing advanced spontaneous tumors. J Immunol 176(12):7325–7334PubMed Nair RE, Kilinc MO, Jones SA, Egilmez NK (2006) Chronic immune therapy induces a progressive increase in intra-tumoral T-suppressor activity and a concurrent loss of tumor-specific CD8+ T-effectors in her-2/neu transgenic mice bearing advanced spontaneous tumors. J Immunol 176(12):7325–7334PubMed
19.
go back to reference Gu T, Kilinc MO, Egilmez NK (2008) Transient activation of tumor-associated T-effector/memory cells promotes tumor eradication via NK-cell recruitment: minimal role for long-term T-cell immunity in cure of metastatic disease. Cancer Immunol Immunother 57(7):997–1005PubMedCrossRef Gu T, Kilinc MO, Egilmez NK (2008) Transient activation of tumor-associated T-effector/memory cells promotes tumor eradication via NK-cell recruitment: minimal role for long-term T-cell immunity in cure of metastatic disease. Cancer Immunol Immunother 57(7):997–1005PubMedCrossRef
20.
go back to reference Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3):272–281PubMedCrossRef Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3):272–281PubMedCrossRef
21.
go back to reference Kilinc MO, Gu T, Harden JL, Virtuoso LP, Egilmez NK (2009) Central role of tumor-associated CD8+ T effector/memory cells in restoring systemic antitumor immunity. J Immunol 182:4217–4225PubMedCrossRef Kilinc MO, Gu T, Harden JL, Virtuoso LP, Egilmez NK (2009) Central role of tumor-associated CD8+ T effector/memory cells in restoring systemic antitumor immunity. J Immunol 182:4217–4225PubMedCrossRef
22.
go back to reference Sica A, Larghi P, Mancino A, Rubino L, Porta C, Grazia Totaro M, Rimoldi M, Kumar Biswas S, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Sem Cancer Biol 18:349–355CrossRef Sica A, Larghi P, Mancino A, Rubino L, Porta C, Grazia Totaro M, Rimoldi M, Kumar Biswas S, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Sem Cancer Biol 18:349–355CrossRef
23.
go back to reference Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739PubMedCrossRef Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739PubMedCrossRef
24.
go back to reference Gallo O et al (1998) Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90:584–596 Gallo O et al (1998) Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90:584–596
25.
go back to reference Jadeski LC, Lala PK (1999) Nitric oxide synthase inhibition by NG-nitro-l-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am J Pathol 155:1381–1390PubMedCrossRef Jadeski LC, Lala PK (1999) Nitric oxide synthase inhibition by NG-nitro-l-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am J Pathol 155:1381–1390PubMedCrossRef
26.
go back to reference Del Vecchio M, Bajetta E, Conova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13(16):4677–4685PubMedCrossRef Del Vecchio M, Bajetta E, Conova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13(16):4677–4685PubMedCrossRef
Metadata
Title
Nitric oxide short-circuits interleukin-12-mediated tumor regression
Authors
Nejat K. Egilmez
Jamie L. Harden
Lauren P. Virtuoso
Reto A. Schwendener
Mehmet O. Kilinc
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 6/2011
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-011-0998-2

Other articles of this Issue 6/2011

Cancer Immunology, Immunotherapy 6/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine