Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 2/2010

01-02-2010 | Original Article

Autophagy facilitates major histocompatibility complex class I expression induced by IFN-γ in B16 melanoma cells

Authors: Bo Li, Zhang Lei, Brain D. Lichty, Dong Li, Gui-Mei Zhang, Zuo-Hua Feng, Yonghong Wan, Bo Huang

Published in: Cancer Immunology, Immunotherapy | Issue 2/2010

Login to get access

Abstract

The reduction or loss of MHC-I antigen surface expression in human and murine tumor cells is partly attributable to the dysregulation of various components of the MHC-I antigen-processing machinery. Accumulating evidence suggests that autophagy, besides its vital role in maintaining the cellular homeostasis, plays an important role in MHC-II surface expression. Here, we report that autophagy is a negative regulator of MHC-I antigen expression in B16 melanoma cells; however, in the presence of IFN-γ, it is converted to a positive regulator. We show that autophagy not only participates in the degradation of MHC-I antigen but also plays a role in the generation of MHC-I-binding peptides. For these two processes, IFN-γ interferes with MHC-I antigen degradation, rather than affecting peptide generation. Using B16 melanoma mouse model, we further show that autophagy may enhance the cytolysis of CTL to melanoma cells at the early stage of melanoma, but impairs the cytolysis at the late stage. Such different consequences may be explained by the different levels of IFN-γ during tumor progression. Taken together, our findings demonstrate that autophagy is involved in the regulation of MHC-I antigen expression, through which autophagy can play different roles in tumor immunity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang RF, Rosenberg SA (1999) Human tumor antigens for cancer vaccine development. Immunol Rev 170:85–100CrossRefPubMed Wang RF, Rosenberg SA (1999) Human tumor antigens for cancer vaccine development. Immunol Rev 170:85–100CrossRefPubMed
2.
go back to reference Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel RM (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411:1058–1064CrossRefPubMed Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel RM (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411:1058–1064CrossRefPubMed
3.
go back to reference McDougall CJ, Ngoi SS, Goldman IS, Godwin T, Felix J, DeCosse JJ, Rigas B (1990) Reduced expression of HLA class I and II antigens in colon cancer. Cancer Res 50:8023–8027PubMed McDougall CJ, Ngoi SS, Goldman IS, Godwin T, Felix J, DeCosse JJ, Rigas B (1990) Reduced expression of HLA class I and II antigens in colon cancer. Cancer Res 50:8023–8027PubMed
4.
go back to reference Hicklin DJ, Marincola FM, Ferrone S (1999) HLA class I antigen downregulation in human cancers: T cell immunotherapy revives an old story. Mol Med Today 5:178–186CrossRefPubMed Hicklin DJ, Marincola FM, Ferrone S (1999) HLA class I antigen downregulation in human cancers: T cell immunotherapy revives an old story. Mol Med Today 5:178–186CrossRefPubMed
5.
go back to reference Dovhey SE, Ghosh NS, Wright KL (2000) Loss of interferon-gamma inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line. Cancer Res 60:5789–5796PubMed Dovhey SE, Ghosh NS, Wright KL (2000) Loss of interferon-gamma inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line. Cancer Res 60:5789–5796PubMed
6.
go back to reference Seliger B, Wollscheid U, Momburg F, Blankenstein T, Huber C (2001) Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res 61:1095–1099PubMed Seliger B, Wollscheid U, Momburg F, Blankenstein T, Huber C (2001) Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res 61:1095–1099PubMed
7.
go back to reference Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M, Campoli M, Ferrone S (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11:8304–8311CrossRefPubMed Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M, Campoli M, Ferrone S (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11:8304–8311CrossRefPubMed
8.
go back to reference Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075CrossRefPubMed Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075CrossRefPubMed
9.
go back to reference Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455CrossRefPubMed Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455CrossRefPubMed
10.
go back to reference Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082CrossRefPubMed Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082CrossRefPubMed
11.
go back to reference Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, Ueno T, Ochiai A, Esumi H (2007) Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 67:9677–9684CrossRefPubMed Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, Ueno T, Ochiai A, Esumi H (2007) Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 67:9677–9684CrossRefPubMed
12.
go back to reference Ogier-Denis E, Codogno P (2003) Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603:113–128PubMed Ogier-Denis E, Codogno P (2003) Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603:113–128PubMed
13.
go back to reference Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66:9349–9351CrossRefPubMed Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66:9349–9351CrossRefPubMed
14.
go back to reference Menéndez-Benito V, Neefjes J (2007) Autophagy in MHC class II presentation: sampling from within. Immunity 26:1–3CrossRefPubMed Menéndez-Benito V, Neefjes J (2007) Autophagy in MHC class II presentation: sampling from within. Immunity 26:1–3CrossRefPubMed
15.
go back to reference Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777CrossRefPubMed Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777CrossRefPubMed
16.
go back to reference Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Müller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 102:7922–7927CrossRefPubMed Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Müller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 102:7922–7927CrossRefPubMed
17.
go back to reference Schmid D, Münz C (2008) Localization and MHC class II presentation of antigens targeted for macroautophagy. Methods Mol Biol 445:213–225CrossRefPubMed Schmid D, Münz C (2008) Localization and MHC class II presentation of antigens targeted for macroautophagy. Methods Mol Biol 445:213–225CrossRefPubMed
18.
go back to reference Riedel A, Nimmerjahn F, Burdach S, Behrends U, Bornkamm GW, Mautner J (2008) Endogenous presentation of a nuclear antigen on MHC class II by autophagy in the absence of CRM1-mediated nuclear export. Eur J Immunol 38:2090–2095CrossRefPubMed Riedel A, Nimmerjahn F, Burdach S, Behrends U, Bornkamm GW, Mautner J (2008) Endogenous presentation of a nuclear antigen on MHC class II by autophagy in the absence of CRM1-mediated nuclear export. Eur J Immunol 38:2090–2095CrossRefPubMed
19.
go back to reference Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771CrossRefPubMed Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771CrossRefPubMed
20.
go back to reference Goldberg AL, Cascio P, Saric T, Rock KL (2002) The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39:147–164CrossRefPubMed Goldberg AL, Cascio P, Saric T, Rock KL (2002) The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39:147–164CrossRefPubMed
21.
go back to reference York IA, Mo AX, Lemerise K, Zeng W, Shen Y, Abraham CR, Saric T, Goldberg AL, Rock KL (2003) The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity 18:429–440CrossRefPubMed York IA, Mo AX, Lemerise K, Zeng W, Shen Y, Abraham CR, Saric T, Goldberg AL, Rock KL (2003) The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity 18:429–440CrossRefPubMed
22.
go back to reference Xiao H, Huang B, Yuan Y, Li D, Han LF, Liu Y, Gong W, Wu FH, Zhang GM, Feng ZH (2007) Soluble PD-1 facilitates 4–1BBL-triggered antitumor immunity against murine H22 hepatocarcinoma in vivo. Clin Cancer Res 13:1823–1830CrossRefPubMed Xiao H, Huang B, Yuan Y, Li D, Han LF, Liu Y, Gong W, Wu FH, Zhang GM, Feng ZH (2007) Soluble PD-1 facilitates 4–1BBL-triggered antitumor immunity against murine H22 hepatocarcinoma in vivo. Clin Cancer Res 13:1823–1830CrossRefPubMed
23.
go back to reference Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65:5009–5014CrossRefPubMed Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65:5009–5014CrossRefPubMed
24.
go back to reference Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB, Kondo S (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346PubMed Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB, Kondo S (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346PubMed
26.
go back to reference Garbi N, Tanaka S, van den Broek M, Momburg F, Hämmerling GJ (2005) Accessory molecules in the assembly of major histocompatibility complex class I/peptide complexes: how essential are they for CD8(+) T-cell immune responses? Immunol Rev 207:77–88CrossRefPubMed Garbi N, Tanaka S, van den Broek M, Momburg F, Hämmerling GJ (2005) Accessory molecules in the assembly of major histocompatibility complex class I/peptide complexes: how essential are they for CD8(+) T-cell immune responses? Immunol Rev 207:77–88CrossRefPubMed
27.
go back to reference Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM (2008) Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 68:6889–6895CrossRefPubMed Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM (2008) Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 68:6889–6895CrossRefPubMed
28.
go back to reference Antoniou AN, Powis SJ, Elliott T (2003) Assembly and export of MHC class I peptide ligands. Curr Opin Immunol 15:75–81CrossRefPubMed Antoniou AN, Powis SJ, Elliott T (2003) Assembly and export of MHC class I peptide ligands. Curr Opin Immunol 15:75–81CrossRefPubMed
29.
go back to reference Van Gool SW, Vandenberghe P, de Boer M, Ceuppens JL (1996) CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol Rev 153:47–83CrossRefPubMed Van Gool SW, Vandenberghe P, de Boer M, Ceuppens JL (1996) CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol Rev 153:47–83CrossRefPubMed
30.
go back to reference Schlom J, Hodge JW (1999) The diversity of T-cell co-stimulation in the induction of antitumor immunity. Immunol Rev 170:73–84CrossRefPubMed Schlom J, Hodge JW (1999) The diversity of T-cell co-stimulation in the induction of antitumor immunity. Immunol Rev 170:73–84CrossRefPubMed
31.
32.
go back to reference Zheng P, Sarma S, Guo Y, Liu Y (1999) Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: lessons from recurrent tumors. Cancer Res 59:3461–3467PubMed Zheng P, Sarma S, Guo Y, Liu Y (1999) Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: lessons from recurrent tumors. Cancer Res 59:3461–3467PubMed
33.
go back to reference Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360CrossRefPubMed Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360CrossRefPubMed
34.
go back to reference Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14CrossRefPubMed Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14CrossRefPubMed
35.
go back to reference Reiman JM, Kmieciak M, Manjili MH, Knutson KL (2007) Tumor immunoediting and immunosculpting pathways to cancer progression. Semin Cancer Biol 17:275–287CrossRefPubMed Reiman JM, Kmieciak M, Manjili MH, Knutson KL (2007) Tumor immunoediting and immunosculpting pathways to cancer progression. Semin Cancer Biol 17:275–287CrossRefPubMed
36.
go back to reference Dunn GP, Ikeda H, Bruce AT, Koebel C, Uppaluri R, Bui J, Chan R, Diamond M, White JM, Sheehan KC, Schreiber RD (2005) Interferon-gamma and cancer immunoediting. Immunol Res 32:231–245CrossRefPubMed Dunn GP, Ikeda H, Bruce AT, Koebel C, Uppaluri R, Bui J, Chan R, Diamond M, White JM, Sheehan KC, Schreiber RD (2005) Interferon-gamma and cancer immunoediting. Immunol Res 32:231–245CrossRefPubMed
Metadata
Title
Autophagy facilitates major histocompatibility complex class I expression induced by IFN-γ in B16 melanoma cells
Authors
Bo Li
Zhang Lei
Brain D. Lichty
Dong Li
Gui-Mei Zhang
Zuo-Hua Feng
Yonghong Wan
Bo Huang
Publication date
01-02-2010
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 2/2010
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-009-0752-1

Other articles of this Issue 2/2010

Cancer Immunology, Immunotherapy 2/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine