Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 5/2009

01-05-2009 | Original Article

Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells

Authors: Yu Liu, Yinyan Yu, Suguang Yang, Bin Zeng, Zhuohan Zhang, Guohui Jiao, Yuan Zhang, Limin Cai, Rongcun Yang

Published in: Cancer Immunology, Immunotherapy | Issue 5/2009

Login to get access

Abstract

An elevated number of Gr-1+CD11b+ myeloid-derived suppression cells (MDSCs) has been described in mice and human bearing tumor and associated with immune suppression. Arginase I production by MDSCs in the tumor environment may be a central mechanism for immunosuppression and tumor evasion. In this study and before, we found that Gr-1+CD11b+ MDSCs from ascites and spleen of mice bearing ovarian 18D carcinoma express a high level of PD-1, CTLA-4, B7-H1 and CD80 while other co-stimulatory molecules, namely CD40, B7-DC and CD86 are not detected. Further studies showed that PD-1 and CTLA-4 on the Gr-1+CD11b+ MDSCs regulated the activity and expression of arginase I. The blockage and silencing of PD-1, CTLA-4 or both PD-1 and CTLA4 molecules could significantly reduce arginase I activity and expression induced with tumor-associated factor. Similar results were also observed while their ligands B7-H1 and/or CD80 were blocked or silenced. Furthermore, CD80 deficiency also decreased the arginase I expression and activity. Antibody blockade or silencing of PD-1, CTLA-4 or both reduced the suppressive potential of PD-1+CTLA-4+MDSCs. Blockade of PD-1, CTLA-4 or both also slowed tumor growth and improved the survival rate of tumor-bearing mice. Thus, there may exist a coinhibitory and costimulatory molecules-based immuno-regulating wet among MDSCs.
Literature
1.
go back to reference Young MR, Wright MA, Matthews JP, Malik I, Prechel M (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J Immunol 156:1916–1922PubMed Young MR, Wright MA, Matthews JP, Malik I, Prechel M (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J Immunol 156:1916–1922PubMed
2.
go back to reference Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T (1996) Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci USA 93:13119–13124PubMedCrossRef Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T (1996) Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci USA 93:13119–13124PubMedCrossRef
3.
go back to reference Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, Nakazawa T, Anderson P, Kiessling R (1996) Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 26:1308–1313PubMedCrossRef Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, Nakazawa T, Anderson P, Kiessling R (1996) Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 26:1308–1313PubMedCrossRef
4.
go back to reference Fu YX, Watson GA, Kasahara M, Lopez DM (1991) The role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. I. Induction of regulatory macrophages in normal mice by the in vivo administration of rGM-CSF. J Immunol 146:783–789PubMed Fu YX, Watson GA, Kasahara M, Lopez DM (1991) The role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. I. Induction of regulatory macrophages in normal mice by the in vivo administration of rGM-CSF. J Immunol 146:783–789PubMed
5.
go back to reference Bronte V, Serafini P, Apolloni E, Zanovello P (2001) Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother 24:431–446PubMedCrossRef Bronte V, Serafini P, Apolloni E, Zanovello P (2001) Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother 24:431–446PubMedCrossRef
6.
go back to reference Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB–2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145PubMedCrossRef Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB–2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145PubMedCrossRef
7.
go back to reference Kusmartsev S, Gabrilovich DI (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186–196PubMedCrossRef Kusmartsev S, Gabrilovich DI (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186–196PubMedCrossRef
8.
go back to reference Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V (2004) Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 53:64–72PubMedCrossRef Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V (2004) Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 53:64–72PubMedCrossRef
9.
go back to reference Frey AB (2006) Myeloid suppressor cells regulate the adaptive immune response to cancer. J Clin Invest 116:2587–2590PubMedCrossRef Frey AB (2006) Myeloid suppressor cells regulate the adaptive immune response to cancer. J Clin Invest 116:2587–2590PubMedCrossRef
10.
go back to reference Seung LP, Rowley DA, Dubey P, Schreiber H (1995) Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA 92:6254–6258PubMedCrossRef Seung LP, Rowley DA, Dubey P, Schreiber H (1995) Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA 92:6254–6258PubMedCrossRef
11.
go back to reference Allez M, Mayer L (2004) Regulatory T cells: peace keepers in the gut. Inflamm Bowel Dis 10:666–676PubMedCrossRef Allez M, Mayer L (2004) Regulatory T cells: peace keepers in the gut. Inflamm Bowel Dis 10:666–676PubMedCrossRef
12.
go back to reference Mills SL, Catania KC (2004) Identification of retinal neurons in a regressive rodent eye (the naked mole-rat). Vis Neurosci 21:107–117PubMedCrossRef Mills SL, Catania KC (2004) Identification of retinal neurons in a regressive rodent eye (the naked mole-rat). Vis Neurosci 21:107–117PubMedCrossRef
13.
go back to reference Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695PubMed Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695PubMed
14.
go back to reference Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX–2 in lung carcinoma. J Exp Med 202:931–939PubMedCrossRef Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX–2 in lung carcinoma. J Exp Med 202:931–939PubMedCrossRef
15.
go back to reference Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849PubMedCrossRef Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849PubMedCrossRef
16.
go back to reference Morris SM Jr (2004) Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care 7:45–51PubMedCrossRef Morris SM Jr (2004) Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care 7:45–51PubMedCrossRef
17.
go back to reference Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, Persons DL, Smith PG, Terranova PF (2000) Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21:585–591PubMedCrossRef Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, Persons DL, Smith PG, Terranova PF (2000) Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21:585–591PubMedCrossRef
18.
go back to reference Tseng JC, Hurtado A, Yee H, Levin B, Boivin C, Benet M, Blank SV, Pellicer A, Meruelo D (2004) Using sindbis viral vectors for specific detection and suppression of advanced ovarian cancer in animal models. Cancer Res 64:6684–6692PubMedCrossRef Tseng JC, Hurtado A, Yee H, Levin B, Boivin C, Benet M, Blank SV, Pellicer A, Meruelo D (2004) Using sindbis viral vectors for specific detection and suppression of advanced ovarian cancer in animal models. Cancer Res 64:6684–6692PubMedCrossRef
19.
go back to reference Corraliza IM, Campo ML, Soler G, Modolell M (1994) Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 174:231–235PubMedCrossRef Corraliza IM, Campo ML, Soler G, Modolell M (1994) Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 174:231–235PubMedCrossRef
20.
go back to reference Yang R, Cai Z, Zhang Y, WHt Yutzy, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+myeloid cells. Cancer Res 66:6807–6815PubMedCrossRef Yang R, Cai Z, Zhang Y, WHt Yutzy, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+myeloid cells. Cancer Res 66:6807–6815PubMedCrossRef
21.
go back to reference Marengere LE, Waterhouse P, Duncan GS, Mittrucker HW, Feng GS, Mak TW (1996) Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272:1170–1173PubMedCrossRef Marengere LE, Waterhouse P, Duncan GS, Mittrucker HW, Feng GS, Mak TW (1996) Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272:1170–1173PubMedCrossRef
22.
go back to reference Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98:13866–13871PubMedCrossRef Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98:13866–13871PubMedCrossRef
23.
go back to reference Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774PubMedCrossRef Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774PubMedCrossRef
24.
go back to reference Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P (2005) Studying the immunosuppressive role of indoleamine 2, 3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int 18:95–100PubMedCrossRef Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P (2005) Studying the immunosuppressive role of indoleamine 2, 3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int 18:95–100PubMedCrossRef
25.
go back to reference Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547PubMedCrossRef Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547PubMedCrossRef
26.
go back to reference Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988PubMedCrossRef Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988PubMedCrossRef
27.
go back to reference Bluestone JA (1997) Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol 158:1989–1993PubMed Bluestone JA (1997) Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol 158:1989–1993PubMed
28.
29.
go back to reference Chitnis T, Najafian N, Abdallah KA, Dong V, Yagita H, Sayegh MH, Khoury SJ (2001) CD28-independent induction of experimental autoimmune encephalomyelitis. J Clin Invest 107:575–583PubMedCrossRef Chitnis T, Najafian N, Abdallah KA, Dong V, Yagita H, Sayegh MH, Khoury SJ (2001) CD28-independent induction of experimental autoimmune encephalomyelitis. J Clin Invest 107:575–583PubMedCrossRef
30.
go back to reference Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA (1996) CTLA-4: a negative regulator of autoimmune disease. J Exp Med 184:783–788PubMedCrossRef Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA (1996) CTLA-4: a negative regulator of autoimmune disease. J Exp Med 184:783–788PubMedCrossRef
31.
go back to reference Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268PubMedCrossRef Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268PubMedCrossRef
32.
go back to reference Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772PubMedCrossRef Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772PubMedCrossRef
33.
go back to reference Porembska Z, Luboinski G, Chrzanowska A, Mielczarek M, Magnuska J, Baranczyk-Kuzma A (2003) Arginase in patients with breast cancer. Clin Chim Acta 328:105–111PubMedCrossRef Porembska Z, Luboinski G, Chrzanowska A, Mielczarek M, Magnuska J, Baranczyk-Kuzma A (2003) Arginase in patients with breast cancer. Clin Chim Acta 328:105–111PubMedCrossRef
34.
go back to reference Porembska Z, Skwarek A, Mielczarek M, Baranczyk-Kuzma A (2002) Serum arginase activity in postsurgical monitoring of patients with colorectal carcinoma. Cancer 94:2930–2934PubMedCrossRef Porembska Z, Skwarek A, Mielczarek M, Baranczyk-Kuzma A (2002) Serum arginase activity in postsurgical monitoring of patients with colorectal carcinoma. Cancer 94:2930–2934PubMedCrossRef
35.
go back to reference Gokmen SS, Aygit AC, Ayhan MS, Yorulmaz F, Gulen S (2001) Significance of arginase and ornithine in malignant tumors of the human skin. J Lab Clin Med 137:340–344PubMedCrossRef Gokmen SS, Aygit AC, Ayhan MS, Yorulmaz F, Gulen S (2001) Significance of arginase and ornithine in malignant tumors of the human skin. J Lab Clin Med 137:340–344PubMedCrossRef
36.
go back to reference Keskinege A, Elgun S, Yilmaz E (2001) Possible implications of arginase and diamine oxidase in prostatic carcinoma. Cancer Detect Prev 25:76–79PubMed Keskinege A, Elgun S, Yilmaz E (2001) Possible implications of arginase and diamine oxidase in prostatic carcinoma. Cancer Detect Prev 25:76–79PubMed
37.
go back to reference Liu Y, Van Ginderachter JA, Brys L, De Baetselier P, Raes G, Geldhof AB (2003) Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol 170:5064–5074PubMed Liu Y, Van Ginderachter JA, Brys L, De Baetselier P, Raes G, Geldhof AB (2003) Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol 170:5064–5074PubMed
Metadata
Title
Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells
Authors
Yu Liu
Yinyan Yu
Suguang Yang
Bin Zeng
Zhuohan Zhang
Guohui Jiao
Yuan Zhang
Limin Cai
Rongcun Yang
Publication date
01-05-2009
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 5/2009
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-008-0591-5

Other articles of this Issue 5/2009

Cancer Immunology, Immunotherapy 5/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine