Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 3/2006

01-03-2006 | Symposium in Writing

Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression

Authors: Akira Ito, Hiroyuki Honda, Takeshi Kobayashi

Published in: Cancer Immunology, Immunotherapy | Issue 3/2006

Login to get access

Abstract

Heat shock proteins (HSPs) are highly conserved proteins whose syntheses are induced by a variety of stresses, including heat stress. Since the expression of HSPs, including HSP70, protects cells from heat-induced apoptosis, HSP expression has been considered to be a complicating factor in hyperthermia. On the other hand, recent reports have shown the importance of HSPs, such as HSP70, HSP90 and glucose-regulated protein 96 (gp96), in immune reactions. If HSP expression induced by hyperthermia is involved in tumor immunity, novel cancer immunotherapy based on this novel concept can be developed. In such a strategy, a tumor-specific hyperthermia system, which can heat the local tumor region to the intended temperature without damaging normal tissue, would be highly advantageous. To achieve tumor-specific hyperthermia, we have developed an intracellular hyperthermia system using magnetite nanoparticles. This novel hyperthermia system can induce necrotic cell death via HSP expression, which induces antitumor immunity. In the present article, cancer immunology and immunotherapy based on hyperthermia, and HSP expression are reviewed and discussed.
Literature
1.
go back to reference Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperon and cytokine. Nat Med 6:435–442PubMedCrossRef Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperon and cytokine. Nat Med 6:435–442PubMedCrossRef
2.
go back to reference Basu S, Binder R, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NFkB pathway. Int Immunol 12:1539–1546PubMedCrossRef Basu S, Binder R, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NFkB pathway. Int Immunol 12:1539–1546PubMedCrossRef
3.
go back to reference Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285PubMedCrossRef Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285PubMedCrossRef
4.
go back to reference Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, Gallino G, Piris A, Cattelan A, Lazzari I, Carrabba M, Scita G, Santantonio C, Pilla L, Tragni G, Lombardo C, Arienti F, Marchiano A, Queirolo P, Bertolini F, Cova A, Lamaj E, Ascani L, Camerini R, Corsi M, Cascinelli N, Lewis JJ, Srivastava P, Parmiani G (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169–4180PubMedCrossRef Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, Gallino G, Piris A, Cattelan A, Lazzari I, Carrabba M, Scita G, Santantonio C, Pilla L, Tragni G, Lombardo C, Arienti F, Marchiano A, Queirolo P, Bertolini F, Cova A, Lamaj E, Ascani L, Camerini R, Corsi M, Cascinelli N, Lewis JJ, Srivastava P, Parmiani G (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169–4180PubMedCrossRef
5.
go back to reference Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M, Mazzaferro V, Coppa J, Srivastava PK, Parmiani G (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53:227–233PubMedCrossRef Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M, Mazzaferro V, Coppa J, Srivastava PK, Parmiani G (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53:227–233PubMedCrossRef
6.
go back to reference Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P (2004) Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 16:615–624PubMedCrossRef Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P (2004) Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 16:615–624PubMedCrossRef
7.
go back to reference Dewey WC, Hopwood LE, Sapareto LA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123:463–474PubMed Dewey WC, Hopwood LE, Sapareto LA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123:463–474PubMed
8.
go back to reference Dressel R, Lubbers M, Walter L, Herr W, Gunther E (1999) Enhanced susceptibility to cytotoxic T lymphocytes without increase of MHC class I antigen expression after conditional overexpression of heat shock protein 70 in target cells. Eur J Immunol 29:3925–3935PubMedCrossRef Dressel R, Lubbers M, Walter L, Herr W, Gunther E (1999) Enhanced susceptibility to cytotoxic T lymphocytes without increase of MHC class I antigen expression after conditional overexpression of heat shock protein 70 in target cells. Eur J Immunol 29:3925–3935PubMedCrossRef
9.
go back to reference Garnett CT, Palena C, Chakarborty M, Tsang KY, Schlom J, Hodge JW (2004) Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 64:7985–7994PubMedCrossRef Garnett CT, Palena C, Chakarborty M, Tsang KY, Schlom J, Hodge JW (2004) Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 64:7985–7994PubMedCrossRef
10.
go back to reference Gordon RT, Hines JR, Gordon D (1979) Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypothesis 5:83–102CrossRef Gordon RT, Hines JR, Gordon D (1979) Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypothesis 5:83–102CrossRef
11.
go back to reference Hauser H, Shen L, Gu QL, Krueger S, Chen SY (2004) Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 11:924–932PubMedCrossRef Hauser H, Shen L, Gu QL, Krueger S, Chen SY (2004) Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 11:924–932PubMedCrossRef
12.
go back to reference Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T (2003) Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng 96:364–369PubMed Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T (2003) Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng 96:364–369PubMed
13.
go back to reference Ito A, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (2001) Augmentation of MHC class I antigen presentation via heat shock protein expression by hyperthermia. Cancer Immunol Immunother 50:515–522PubMedCrossRef Ito A, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (2001) Augmentation of MHC class I antigen presentation via heat shock protein expression by hyperthermia. Cancer Immunol Immunother 50:515–522PubMedCrossRef
14.
go back to reference Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T (2003) Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol Immunother 52:80–88PubMed Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T (2003) Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol Immunother 52:80–88PubMed
15.
go back to reference Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T (2004) Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212:167–175PubMedCrossRef Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T (2004) Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212:167–175PubMedCrossRef
16.
go back to reference Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, Saida T, Kobayashi T (2003) Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 94:308–313PubMedCrossRef Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, Saida T, Kobayashi T (2003) Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 94:308–313PubMedCrossRef
17.
go back to reference Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8:649–654PubMedCrossRef Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8:649–654PubMedCrossRef
18.
go back to reference Ito A, Matsuoka M, Honda H, Kobayashi T (2004) Anititumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol Immunother 53:26–32PubMedCrossRef Ito A, Matsuoka M, Honda H, Kobayashi T (2004) Anititumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol Immunother 53:26–32PubMedCrossRef
19.
go back to reference Ito A, Matsuoka M, Honda H, Kobayashi T (2003) Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther 10:918–925PubMedCrossRef Ito A, Matsuoka M, Honda H, Kobayashi T (2003) Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther 10:918–925PubMedCrossRef
20.
go back to reference Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R (1993) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 9:51–68PubMedCrossRef Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R (1993) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 9:51–68PubMedCrossRef
21.
go back to reference Jordan A, Wust P, Scholz R, Tesch B, Fähling H, Mitrovics T, Vogl T, Cervós-Navarro J, Felix R (1996) Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int J Hyperthermia 12:705–722PubMedCrossRef Jordan A, Wust P, Scholz R, Tesch B, Fähling H, Mitrovics T, Vogl T, Cervós-Navarro J, Felix R (1996) Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int J Hyperthermia 12:705–722PubMedCrossRef
22.
go back to reference Kato N, Kobayashi T, Honda H (2003) Screening of stress enhancer based on analysis of gene expression profiles: enhancement of hyperthermia-induced tumor necrosis by an MMP-3 inhibitor. Cancer Sci 94:644–649PubMedCrossRef Kato N, Kobayashi T, Honda H (2003) Screening of stress enhancer based on analysis of gene expression profiles: enhancement of hyperthermia-induced tumor necrosis by an MMP-3 inhibitor. Cancer Sci 94:644–649PubMedCrossRef
23.
go back to reference Labarriere N, Bretaudeau L, Gervois N, Bodinier M, Bougras G, Diez E, Lang F, Gregoire M, Jotereau F (2002) Apoptotic body-loaded dendritic cells efficiently cross-prime cytotoxic T lymphocytes specific for NA17-A antigen but not for Melan-A/MART-1 antigen. Int J Cancer 101:280–286PubMedCrossRef Labarriere N, Bretaudeau L, Gervois N, Bodinier M, Bougras G, Diez E, Lang F, Gregoire M, Jotereau F (2002) Apoptotic body-loaded dendritic cells efficiently cross-prime cytotoxic T lymphocytes specific for NA17-A antigen but not for Melan-A/MART-1 antigen. Int J Cancer 101:280–286PubMedCrossRef
24.
go back to reference Le B, Shinkai M, Kitade T, Honda H, Yoshida J, Wakabayashi T, Kobayashi T (2001) Preparation of tumor-specific magnetoliposomes and their application for hyperthermia. J Chem Eng Jpn 34:66–72CrossRef Le B, Shinkai M, Kitade T, Honda H, Yoshida J, Wakabayashi T, Kobayashi T (2001) Preparation of tumor-specific magnetoliposomes and their application for hyperthermia. J Chem Eng Jpn 34:66–72CrossRef
26.
go back to reference Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, Melani C (2004) Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Res 64:1502–1508PubMedCrossRef Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, Melani C (2004) Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Res 64:1502–1508PubMedCrossRef
27.
go back to reference Matsuoka F, Shinkai M, Honda H, Kubo T, Sugita T, Kobayashi T (2004) Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn Res Technol 2:3PubMedCrossRef Matsuoka F, Shinkai M, Honda H, Kubo T, Sugita T, Kobayashi T (2004) Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn Res Technol 2:3PubMedCrossRef
28.
go back to reference Matsuno H, Tohnai I, Mitsudo K, Hayashi Y, Ito M, Shinkai M, Kobayashi T, Yoshida J, Ueda M (2001) Interstitial hyperthermia using magnetite cationic liposomes inhibit to tumor growth of VX-7 transplanted tumor in rabbit tongue. Jpn J Hyperthermic Oncol 17:141–149 Matsuno H, Tohnai I, Mitsudo K, Hayashi Y, Ito M, Shinkai M, Kobayashi T, Yoshida J, Ueda M (2001) Interstitial hyperthermia using magnetite cationic liposomes inhibit to tumor growth of VX-7 transplanted tumor in rabbit tongue. Jpn J Hyperthermic Oncol 17:141–149
29.
go back to reference Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchiano A, Andreola S, Camerini R, Corsi M, Lewis JJ, Srivastava PK, Parmiani G (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235–3245PubMed Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchiano A, Andreola S, Camerini R, Corsi M, Lewis JJ, Srivastava PK, Parmiani G (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235–3245PubMed
30.
go back to reference Ménoret A, Chandawarkar R (1998) Heat-shock protein-based anticancer immunotherapy: an idea whose time has come. Sem Immunol 25:654–660 Ménoret A, Chandawarkar R (1998) Heat-shock protein-based anticancer immunotherapy: an idea whose time has come. Sem Immunol 25:654–660
31.
go back to reference Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A, Gastpar R, Issels RD (2002) Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia 18:563–575PubMedCrossRef Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A, Gastpar R, Issels RD (2002) Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia 18:563–575PubMedCrossRef
32.
go back to reference Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267–284PubMedCrossRef Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267–284PubMedCrossRef
33.
go back to reference Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperon function of hsp 70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159PubMedCrossRef Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperon function of hsp 70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159PubMedCrossRef
34.
go back to reference Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1996) Intracellular hyperthermia for cancer using magnetite cationic liposome: in vitro study. Jpn J Cancer Res 87:1179–1183PubMed Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1996) Intracellular hyperthermia for cancer using magnetite cationic liposome: in vitro study. Jpn J Cancer Res 87:1179–1183PubMed
35.
go back to reference Shinkai M, Le B, Honda H, Yoshikawa K, Shimizu K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T (2001) Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes. Jpn J Cancer Res 92:1138–1145PubMed Shinkai M, Le B, Honda H, Yoshikawa K, Shimizu K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T (2001) Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes. Jpn J Cancer Res 92:1138–1145PubMed
36.
go back to reference Srivastava PK, Ménoret A, Basu S, Binder R, Quade K (1998) Heat shock proteins come of age: primitive functions acquired new roles in an adaptive world. Immunity 8:657–665PubMedCrossRef Srivastava PK, Ménoret A, Basu S, Binder R, Quade K (1998) Heat shock proteins come of age: primitive functions acquired new roles in an adaptive world. Immunity 8:657–665PubMedCrossRef
37.
go back to reference Srivastava PK, Maki RG (1991) Stress-induced proteins in immune response to cancer. Curr Top Microbiol Immunol 167:109–123PubMed Srivastava PK, Maki RG (1991) Stress-induced proteins in immune response to cancer. Curr Top Microbiol Immunol 167:109–123PubMed
38.
go back to reference Srivastava PK, Heike M (1993) Tumor-specific immunogenicity of stress-induced proteins: convergence of two evolutionary pathways of antigen presentation? Semin Immunol 3:57–64 Srivastava PK, Heike M (1993) Tumor-specific immunogenicity of stress-induced proteins: convergence of two evolutionary pathways of antigen presentation? Semin Immunol 3:57–64
39.
go back to reference Srivastava PK, Udono H, Blachere NE, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39:93–98PubMedCrossRef Srivastava PK, Udono H, Blachere NE, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39:93–98PubMedCrossRef
40.
go back to reference Srivastava PK (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194PubMedCrossRef Srivastava PK (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194PubMedCrossRef
41.
go back to reference Srivastava PK (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425PubMedCrossRef Srivastava PK (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425PubMedCrossRef
42.
go back to reference Subjeck JR, Sciandra JJ, Chao CF, Johnson RJ (1982) Heat shock proteins and biological response to hyperthermia. Br J Cancer 45:127–131 Subjeck JR, Sciandra JJ, Chao CF, Johnson RJ (1982) Heat shock proteins and biological response to hyperthermia. Br J Cancer 45:127–131
43.
go back to reference Subjeck JR, Sciandra JJ, Johnson RJ (1982) Heat shock proteins and thermotolerance; a comparison of induction kinetics. Br J Radiol 55:579–584PubMedCrossRef Subjeck JR, Sciandra JJ, Johnson RJ (1982) Heat shock proteins and thermotolerance; a comparison of induction kinetics. Br J Radiol 55:579–584PubMedCrossRef
44.
go back to reference Suzuki M, Shinkai M, Honda H, Kobayashi T (2003) Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes. Melanoma Res 13:129–135PubMedCrossRef Suzuki M, Shinkai M, Honda H, Kobayashi T (2003) Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes. Melanoma Res 13:129–135PubMedCrossRef
45.
go back to reference Tanaka A, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, Honda H (2005) Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer 116:624–633PubMedCrossRef Tanaka A, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, Honda H (2005) Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer 116:624–633PubMedCrossRef
46.
go back to reference Tanaka A, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, Honda H (2005) Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. J Bio Bioeng 100:112–115PubMedCrossRef Tanaka A, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, Honda H (2005) Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. J Bio Bioeng 100:112–115PubMedCrossRef
47.
go back to reference Todryk S, Melcher AA, Hardwick N, Linardakis E, Bateman A, Colombo MP, Stoppacciaro A, Vile RG (1999) Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol 163:1398–1408PubMed Todryk S, Melcher AA, Hardwick N, Linardakis E, Bateman A, Colombo MP, Stoppacciaro A, Vile RG (1999) Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol 163:1398–1408PubMed
48.
go back to reference Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced protein gp96, hsp90, and hsp70. J Immunol 152:5398–5403PubMed Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced protein gp96, hsp90, and hsp70. J Immunol 152:5398–5403PubMed
49.
go back to reference Van der Zee J (2002) Heating the patient: a promising approach? Annu Oncol 13:1173–1184CrossRef Van der Zee J (2002) Heating the patient: a promising approach? Annu Oncol 13:1173–1184CrossRef
50.
go back to reference Wells AD, Rai SK, Salvato MS, Band H, Malkovsky M (1998) Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int Immunol 10:609–617PubMedCrossRef Wells AD, Rai SK, Salvato MS, Band H, Malkovsky M (1998) Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int Immunol 10:609–617PubMedCrossRef
51.
go back to reference Wells AD, Malkovsky M (2000) Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21:129–132PubMedCrossRef Wells AD, Malkovsky M (2000) Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21:129–132PubMedCrossRef
52.
go back to reference Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1998) Intracellular hyperthermia for cancer using magnetite cationic liposome: an in vivo study. Jpn J Cancer Res 89:463–469PubMed Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1998) Intracellular hyperthermia for cancer using magnetite cationic liposome: an in vivo study. Jpn J Cancer Res 89:463–469PubMed
53.
go back to reference Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1998) Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J Cancer Res 89:775–782PubMed Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1998) Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J Cancer Res 89:775–782PubMed
54.
go back to reference Ye J, Chen GS, Song HP, Li ZS, Huang YY, Qu P, Sun YJ, Zhang XM, Sui YF (2004) Heat shock protein 70/MAGE-1 tumor vaccine can enhance the potency of MAGE-1-specific cellular immune responses in vivo. Cancer Immunol Immunother 53:825–834PubMedCrossRef Ye J, Chen GS, Song HP, Li ZS, Huang YY, Qu P, Sun YJ, Zhang XM, Sui YF (2004) Heat shock protein 70/MAGE-1 tumor vaccine can enhance the potency of MAGE-1-specific cellular immune responses in vivo. Cancer Immunol Immunother 53:825–834PubMedCrossRef
55.
go back to reference Yonezawa M, Ohtsuka T, Matsui N, Tsuji H, Kato KH, Moriyama A, Kato T (1996) Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro. Int J Cancer 66:347–351PubMedCrossRef Yonezawa M, Ohtsuka T, Matsui N, Tsuji H, Kato KH, Moriyama A, Kato T (1996) Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro. Int J Cancer 66:347–351PubMedCrossRef
Metadata
Title
Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression
Authors
Akira Ito
Hiroyuki Honda
Takeshi Kobayashi
Publication date
01-03-2006
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 3/2006
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-005-0049-y

Other articles of this Issue 3/2006

Cancer Immunology, Immunotherapy 3/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine