Skip to main content
Top
Published in: Abdominal Radiology 6/2012

01-12-2012

Role of PET/CT in the functional imaging of endocrine pancreatic tumors

Authors: Vittoria Rufini, Richard P. Baum, Paola Castaldi, Giorgio Treglia, Anna Maria De Gaetano, Cecilia Carreras, Daniel Kaemmerer, Merten Hommann, Dieter Hörsch, Lorenzo Bonomo, Alessandro Giordano

Published in: Abdominal Radiology | Issue 6/2012

Login to get access

Abstract

Endocrine pancreatic tumors (EPTs) are a heterogeneous group of neoplasms with variable clinical and biological features and prognosis, ranging from very slow-growing tumors to highly aggressive and very malignant ones. As other neuroendocrine tumors, EPTs are characterized by the presence of neuroamine uptake mechanisms and/or peptide receptors at the cell membrane and these features constitute the basis of the clinical use of specific radiolabeled ligands, both for imaging and therapy. The more widespread use of hybrid machines, i.e., positron emission tomography/computed tomography (PET/CT), allows to perform imaging with high resolution and high diagnostic accuracy especially for small lesions, and to correlate anatomic location with function. The recent WHO recommendations for classification and prognostic factors help the selection of tracers likely to show a positive image on PET; therefore, tracers exploiting specific metabolic patterns (18F-DOPA and 11C-5-HTP) or specific receptor expression (68Ga-DOTA-peptides) are suited to well-differentiated tumors, while the use of 18F-FDG is preferred for poorly-differentiated neoplasms with high proliferative activity and loss of neuroendocrine features. In differentiated EPTs, 11C-5-HTP performs better than 18F-DOPA even though its use is hampered by its complex production and limited availability and experience; 68Ga-peptides are indicated for all type of gastroenteropancreatic (GEP) neuroendocrine tumors, regardless of their functional activity. In addition, 68Ga-DOTA-peptides play a distinctive role in planning peptide receptor radionuclide therapy.
Literature
2.
go back to reference Metz DC, Jensen RT (2008) Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 135:1469–1492PubMedCrossRef Metz DC, Jensen RT (2008) Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 135:1469–1492PubMedCrossRef
3.
go back to reference Kaltsas GA, Besser GM, Grossman AB (2004) The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 25:458–511PubMedCrossRef Kaltsas GA, Besser GM, Grossman AB (2004) The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 25:458–511PubMedCrossRef
4.
go back to reference Solcia E, Kloeppel G, Sobin LH (2000) World Health Organization international histological classification of endocrine tumors, 2nd edn. Springer, Berlin Solcia E, Kloeppel G, Sobin LH (2000) World Health Organization international histological classification of endocrine tumors, 2nd edn. Springer, Berlin
5.
go back to reference Klöppel G, Perren A, Heitz PU (2004) The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci 1014:13–27PubMedCrossRef Klöppel G, Perren A, Heitz PU (2004) The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci 1014:13–27PubMedCrossRef
6.
go back to reference Öberg K, Castellano D (2011) Current knowledge on diagnosis and staging of neuroendocrine tumors. Cancer Metastasis Rev 30(Suppl 1):S3–S7CrossRef Öberg K, Castellano D (2011) Current knowledge on diagnosis and staging of neuroendocrine tumors. Cancer Metastasis Rev 30(Suppl 1):S3–S7CrossRef
7.
go back to reference Ekeblad S, Skogseid B, Dunder K, et al. (2008) Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clin Cancer Res 14:7798–7803PubMedCrossRef Ekeblad S, Skogseid B, Dunder K, et al. (2008) Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clin Cancer Res 14:7798–7803PubMedCrossRef
8.
go back to reference Rindi G, Klöppel G, Alhman H, et al. (2006) TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449:395–401PubMedCrossRef Rindi G, Klöppel G, Alhman H, et al. (2006) TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449:395–401PubMedCrossRef
9.
go back to reference Seregni E, Ferrari L, Stivanello M, et al. (2000) Laboratory tests for neuroendocrine tumors. Quart J Nucl Med 44:22–41 Seregni E, Ferrari L, Stivanello M, et al. (2000) Laboratory tests for neuroendocrine tumors. Quart J Nucl Med 44:22–41
10.
go back to reference Lawrence B, Gustafsson BI, Kidd M, et al. (2011) The clinical relevance of Chromogranin A as a biomarker for gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab N Am 40:111–134CrossRef Lawrence B, Gustafsson BI, Kidd M, et al. (2011) The clinical relevance of Chromogranin A as a biomarker for gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab N Am 40:111–134CrossRef
11.
go back to reference Bombardieri E, Maccauro M, de Deckere E, et al. (2001) Nuclear medicine imaging of neuroendocrine tumors. Ann Oncol 12:51–61CrossRef Bombardieri E, Maccauro M, de Deckere E, et al. (2001) Nuclear medicine imaging of neuroendocrine tumors. Ann Oncol 12:51–61CrossRef
12.
go back to reference Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247PubMedCrossRef Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247PubMedCrossRef
13.
go back to reference Reubi JC (1995) Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J Nucl Med 36:1825–1835PubMed Reubi JC (1995) Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J Nucl Med 36:1825–1835PubMed
14.
go back to reference Koopmans KP, Neels ON, Kema IP, et al. (2009) Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol/Hematol 71:199–213CrossRef Koopmans KP, Neels ON, Kema IP, et al. (2009) Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol/Hematol 71:199–213CrossRef
15.
16.
go back to reference Basu S, Kumar R, Rubello D, et al. (2008) PET imaging in neuroendocrine tumors: current status and future prospects. Minerva Endocrinol 33:257–275PubMed Basu S, Kumar R, Rubello D, et al. (2008) PET imaging in neuroendocrine tumors: current status and future prospects. Minerva Endocrinol 33:257–275PubMed
17.
go back to reference Khan S, Lloyd C, Szyszko T, et al. (2008) PET imaging in endocrine tumours. Minerva Endocrinol 33:41–52PubMed Khan S, Lloyd C, Szyszko T, et al. (2008) PET imaging in endocrine tumours. Minerva Endocrinol 33:41–52PubMed
18.
go back to reference Ambrosini V, Tomassetti P, Franchi R, Fanti S (2010) Imaging of NETs with PET radiopharmaceuticals. Quart J Nucl Med Mol Imaging 54:16–23 Ambrosini V, Tomassetti P, Franchi R, Fanti S (2010) Imaging of NETs with PET radiopharmaceuticals. Quart J Nucl Med Mol Imaging 54:16–23
19.
go back to reference Miederer M, Weber MM, Fottner C (2010) Molecular imaging of gastroenteropancreatic neuroendocrine tumors. Gastroenterol Clin N Am 39:923–935CrossRef Miederer M, Weber MM, Fottner C (2010) Molecular imaging of gastroenteropancreatic neuroendocrine tumors. Gastroenterol Clin N Am 39:923–935CrossRef
20.
go back to reference Bombardieri E, Aktolun C, Baum RP, et al. (2003) FDG-PET: procedure guidelines for tumour imaging. Eur J Nucl Med 30:115–124 Bombardieri E, Aktolun C, Baum RP, et al. (2003) FDG-PET: procedure guidelines for tumour imaging. Eur J Nucl Med 30:115–124
21.
go back to reference Boellaard R, O’Doherty MJ, Weber WA, et al. (2010) FDG PET and PET/CT: EANM procedure guidelines for tumor PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200PubMedCrossRef Boellaard R, O’Doherty MJ, Weber WA, et al. (2010) FDG PET and PET/CT: EANM procedure guidelines for tumor PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200PubMedCrossRef
22.
go back to reference Adams S, Baum R, Rink T, et al. (1998) Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 25:79–83PubMedCrossRef Adams S, Baum R, Rink T, et al. (1998) Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 25:79–83PubMedCrossRef
23.
go back to reference Ahlström H, Eriksson B, Bergström M, et al. (1995) Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology 195:333–337PubMed Ahlström H, Eriksson B, Bergström M, et al. (1995) Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology 195:333–337PubMed
24.
go back to reference Jager PL, Chirakal R, Marriott CJ, et al. (2008) 6-l-18F-Fluorodihydroxyphenilalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49:573–586PubMedCrossRef Jager PL, Chirakal R, Marriott CJ, et al. (2008) 6-l-18F-Fluorodihydroxyphenilalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49:573–586PubMedCrossRef
25.
go back to reference Minn H, Kauhanem S, Seppanen M, Nuutila P (2009) 18F-FDOPA: a multiple target molecule. J Nucl Med 50:1915–1918PubMedCrossRef Minn H, Kauhanem S, Seppanen M, Nuutila P (2009) 18F-FDOPA: a multiple target molecule. J Nucl Med 50:1915–1918PubMedCrossRef
26.
go back to reference Koopmans KP, Brouwers AH, De Hooge MN, et al. (2005) Carcinoid crisis after injection of 6-18F-fluorodihydroxyphenilalanine in a patient with metastatic carcinoid. J Nucl Med 46:1240–1243PubMed Koopmans KP, Brouwers AH, De Hooge MN, et al. (2005) Carcinoid crisis after injection of 6-18F-fluorodihydroxyphenilalanine in a patient with metastatic carcinoid. J Nucl Med 46:1240–1243PubMed
27.
go back to reference Hoegerle S, Schneider B, Kraft A, et al. (1999) Imaging of metastatic gastrointestinal carcinoid by 18F-DOPA positron emission tomography. Nuklearmedizin 38:127–130PubMed Hoegerle S, Schneider B, Kraft A, et al. (1999) Imaging of metastatic gastrointestinal carcinoid by 18F-DOPA positron emission tomography. Nuklearmedizin 38:127–130PubMed
28.
go back to reference Brown WD, Oakes TR, DeJesus OT, et al. (1998) Fluorine-18-fluoro-l-DOPA dosimetry with carbidopa pretreatment. J Nucl Med 39:1884–1891PubMed Brown WD, Oakes TR, DeJesus OT, et al. (1998) Fluorine-18-fluoro-l-DOPA dosimetry with carbidopa pretreatment. J Nucl Med 39:1884–1891PubMed
29.
go back to reference Tessonnier L, Sebag F, Ghander C, et al. (2010) Limited value of 18F-F-DOPA PET to localize pancreatic insulin-secreting tumors in adults with hyperinsulinemic hypoglycemia. J Clin Endocrinol Metab 95(1):303–307PubMedCrossRef Tessonnier L, Sebag F, Ghander C, et al. (2010) Limited value of 18F-F-DOPA PET to localize pancreatic insulin-secreting tumors in adults with hyperinsulinemic hypoglycemia. J Clin Endocrinol Metab 95(1):303–307PubMedCrossRef
30.
go back to reference Hoffman JM, Melega WP, Hawk TC, et al. (1992) The effects of carbidopa administration on 6-[18F]fluoro-l-dopa kinetics in positron emission tomography. J Nucl Med 33:1472–1477PubMed Hoffman JM, Melega WP, Hawk TC, et al. (1992) The effects of carbidopa administration on 6-[18F]fluoro-l-dopa kinetics in positron emission tomography. J Nucl Med 33:1472–1477PubMed
31.
go back to reference Timmers HJ, Hadi M, Carrasquillo JA, et al. (2007) The effects of carbidopa on uptake of 6-18F-fluoro-l-DOPA in PET of pheochromocytoma and extraadrenal abdominal paraganglioma. J Nucl Med 48:1599–1606PubMedCrossRef Timmers HJ, Hadi M, Carrasquillo JA, et al. (2007) The effects of carbidopa on uptake of 6-18F-fluoro-l-DOPA in PET of pheochromocytoma and extraadrenal abdominal paraganglioma. J Nucl Med 48:1599–1606PubMedCrossRef
32.
go back to reference Eriksson B, Örlefors H, Öberg K, et al. (2005) Developments in PET for the detection of endocrine tumors. Best Pract Res Clin Endocrinol Metab 19:311–324PubMedCrossRef Eriksson B, Örlefors H, Öberg K, et al. (2005) Developments in PET for the detection of endocrine tumors. Best Pract Res Clin Endocrinol Metab 19:311–324PubMedCrossRef
33.
go back to reference Örlefors H, Sundin A, Garske U, et al. (2005) Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 90:3392–3400PubMedCrossRef Örlefors H, Sundin A, Garske U, et al. (2005) Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 90:3392–3400PubMedCrossRef
34.
go back to reference Koopmans KP, Neels OC, Kema IP, et al. (2008) Improved staging of patients with carcinoid and islet cell tumors with 18F-fluorodihydroxyphenilalanine and 11C-5-hydroxytryptophan positron emission tomography. J Clin Oncol 26:1489–1495PubMedCrossRef Koopmans KP, Neels OC, Kema IP, et al. (2008) Improved staging of patients with carcinoid and islet cell tumors with 18F-fluorodihydroxyphenilalanine and 11C-5-hydroxytryptophan positron emission tomography. J Clin Oncol 26:1489–1495PubMedCrossRef
35.
go back to reference Orlefors H, Sundin A, Lu L, et al. (2006) Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumors with 11C-5-hydroxytryptophan positron emission tomography. Eur J Nucl Med Mol Imaging 33:60–65PubMedCrossRef Orlefors H, Sundin A, Lu L, et al. (2006) Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumors with 11C-5-hydroxytryptophan positron emission tomography. Eur J Nucl Med Mol Imaging 33:60–65PubMedCrossRef
37.
go back to reference Virgolini I, Ambrosini V, Bomanji JB, et al. (2010) Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 37:2004–2010PubMedCrossRef Virgolini I, Ambrosini V, Bomanji JB, et al. (2010) Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 37:2004–2010PubMedCrossRef
38.
go back to reference Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-labeled peptides in tumor imaging. J Nucl Med 46(Suppl 1):172S–178SPubMed Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-labeled peptides in tumor imaging. J Nucl Med 46(Suppl 1):172S–178SPubMed
39.
go back to reference Hofmann M, Maecke H, Borner H, et al. (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757PubMedCrossRef Hofmann M, Maecke H, Borner H, et al. (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757PubMedCrossRef
40.
go back to reference Pettinato C, Sarnelli A, Di Donna M, et al. (2008) 68Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. Eur J Nucl Med Mol Imaging 35:72–79PubMedCrossRef Pettinato C, Sarnelli A, Di Donna M, et al. (2008) 68Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. Eur J Nucl Med Mol Imaging 35:72–79PubMedCrossRef
41.
go back to reference Prasad V, Baum RP (2010) Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Quart J Nucl Med Mol Imaging 54:61–67 Prasad V, Baum RP (2010) Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Quart J Nucl Med Mol Imaging 54:61–67
42.
go back to reference Shastry M, Kayani I, Wild D, et al. (2010) Distribution pattern of 68Ga-DOTATATE in disease-free patients. Nucl Med Commun 31:1025–1032PubMed Shastry M, Kayani I, Wild D, et al. (2010) Distribution pattern of 68Ga-DOTATATE in disease-free patients. Nucl Med Commun 31:1025–1032PubMed
43.
go back to reference Castellucci P, Ucha JP, Fuccio C, et al. (2011) Incidence of increased 68Ga-DOTA-NOC uptake in the pancreatic head in a large series of extrapancreatic NET patients studied with sequential PET/CT. J Nucl Med 52:886–890PubMedCrossRef Castellucci P, Ucha JP, Fuccio C, et al. (2011) Incidence of increased 68Ga-DOTA-NOC uptake in the pancreatic head in a large series of extrapancreatic NET patients studied with sequential PET/CT. J Nucl Med 52:886–890PubMedCrossRef
44.
go back to reference Al-Ibraheem A, Bundschuh RA, Notni J, et al. (2011) Focal uptake of 68Ga-DOTAGTOC in the pancreas: pathological or physiological correlate in patients with neuroendocrine tumors. Eur J Nucl Med Mol Imaging 38:2005–2013PubMedCrossRef Al-Ibraheem A, Bundschuh RA, Notni J, et al. (2011) Focal uptake of 68Ga-DOTAGTOC in the pancreas: pathological or physiological correlate in patients with neuroendocrine tumors. Eur J Nucl Med Mol Imaging 38:2005–2013PubMedCrossRef
45.
go back to reference Hoegerle S, Altehoefer C, Ghanem N, et al. (2001) Whole body 18F-DOPA PET for detection of gastrointestinal carcinoid tumors. Radiology 220:373–380PubMed Hoegerle S, Altehoefer C, Ghanem N, et al. (2001) Whole body 18F-DOPA PET for detection of gastrointestinal carcinoid tumors. Radiology 220:373–380PubMed
46.
go back to reference Becherer A, Stabo M, Karanikas G, et al. (2004) Imaging of advanced neuroendocrine tumors with 18F-DOPA PET. J Nucl Med 45:1161–1167PubMed Becherer A, Stabo M, Karanikas G, et al. (2004) Imaging of advanced neuroendocrine tumors with 18F-DOPA PET. J Nucl Med 45:1161–1167PubMed
47.
go back to reference Koopmans KP, de Vries EG, Kema IP, et al. (2006) Staging of carcinoid tumors using 18F-DOPA positron emission tomography: a diagnostic accuracy study. Lancet Oncol 7:728–734PubMedCrossRef Koopmans KP, de Vries EG, Kema IP, et al. (2006) Staging of carcinoid tumors using 18F-DOPA positron emission tomography: a diagnostic accuracy study. Lancet Oncol 7:728–734PubMedCrossRef
48.
go back to reference Kauhanen S, Seppanen M, Minn H, Nuutila P (2010) Clinical PET imaging of insulinoma and beta-cell hyperplasia. Curr Pharm Des 16:1550–1560PubMedCrossRef Kauhanen S, Seppanen M, Minn H, Nuutila P (2010) Clinical PET imaging of insulinoma and beta-cell hyperplasia. Curr Pharm Des 16:1550–1560PubMedCrossRef
49.
go back to reference Otonkoski T, Nanto-Salonen K, Seppanen M, et al. (2006) Noninvasive diagnosis of focal hyperinsulinism in infancy with [18F]-DOPA positron emission tomography. Diabetes 55:13–18PubMedCrossRef Otonkoski T, Nanto-Salonen K, Seppanen M, et al. (2006) Noninvasive diagnosis of focal hyperinsulinism in infancy with [18F]-DOPA positron emission tomography. Diabetes 55:13–18PubMedCrossRef
50.
go back to reference Kauhanen S, Seppanen M, Nuutila P (2008) Premedication with carbidopa masks positive finding of insulinoma and beta-cell hyperplasia in [(18)F]-dihydroxy-phenyl-alanine positron emission tomography. J Clin Oncol 26:5307–5308PubMedCrossRef Kauhanen S, Seppanen M, Nuutila P (2008) Premedication with carbidopa masks positive finding of insulinoma and beta-cell hyperplasia in [(18)F]-dihydroxy-phenyl-alanine positron emission tomography. J Clin Oncol 26:5307–5308PubMedCrossRef
51.
go back to reference Gabriel M, Decristoforo C, Kendler D, et al. (2007) 68Ga-DOTA-Tyr3-Octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518PubMedCrossRef Gabriel M, Decristoforo C, Kendler D, et al. (2007) 68Ga-DOTA-Tyr3-Octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518PubMedCrossRef
52.
go back to reference Krausz Y, Freedman N, Rubinstein R, et al. (2011) 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with 111In-DTPA-octreotide (Octreoscan). Mol Imaging Biol 13:583–593PubMedCrossRef Krausz Y, Freedman N, Rubinstein R, et al. (2011) 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with 111In-DTPA-octreotide (Octreoscan). Mol Imaging Biol 13:583–593PubMedCrossRef
53.
go back to reference Baum RP, Prasad V (2008) PET and PET-CT imaging of neuroendocrine tumors. In: Wahl R (ed) Principles and practice of PET and PET/CT. Philadelphia: Lippincott Williams & Wilkins, pp 411–437 Baum RP, Prasad V (2008) PET and PET-CT imaging of neuroendocrine tumors. In: Wahl R (ed) Principles and practice of PET and PET/CT. Philadelphia: Lippincott Williams & Wilkins, pp 411–437
54.
go back to reference Schreiter NF, Brenner W, Nogami M, et al. (2012) Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET-CT for staging enteropancreatic neuroendocrine tumours. Eur J Nucl Med 39(1):72–82. doi:10.1007/s00259-011-1935-5 CrossRef Schreiter NF, Brenner W, Nogami M, et al. (2012) Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET-CT for staging enteropancreatic neuroendocrine tumours. Eur J Nucl Med 39(1):72–82. doi:10.​1007/​s00259-011-1935-5 CrossRef
55.
go back to reference Prasad V, Ambrosini V, Hommann M, et al. (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using Ga-68 DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77PubMedCrossRef Prasad V, Ambrosini V, Hommann M, et al. (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using Ga-68 DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77PubMedCrossRef
56.
go back to reference Kumar R, Sharma P, Garg P, et al. (2011) Role of 68Ga-DOTATOC PET-CT in the diagnosis and staging of pancreatic neuroendocrine tumors. Eur Radiol 21:2408–2416PubMedCrossRef Kumar R, Sharma P, Garg P, et al. (2011) Role of 68Ga-DOTATOC PET-CT in the diagnosis and staging of pancreatic neuroendocrine tumors. Eur Radiol 21:2408–2416PubMedCrossRef
57.
go back to reference Versari A, Camellini L, Carlinfante G, et al. (2010) Ga-68 DOTATOC PET, endoscopic ultrasonography, and multidetector CT in the diagnosis of duodenopancreatic neuroendocrine tumors. Clin Nucl Med 35:321–328PubMedCrossRef Versari A, Camellini L, Carlinfante G, et al. (2010) Ga-68 DOTATOC PET, endoscopic ultrasonography, and multidetector CT in the diagnosis of duodenopancreatic neuroendocrine tumors. Clin Nucl Med 35:321–328PubMedCrossRef
58.
go back to reference Kaemmerer D, Peter L, Lupp A, et al. (2011) Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 38:1659–1668PubMedCrossRef Kaemmerer D, Peter L, Lupp A, et al. (2011) Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 38:1659–1668PubMedCrossRef
59.
go back to reference Hoegerle S, Altehoefer C, Ghanem N, et al. (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28:64–71PubMedCrossRef Hoegerle S, Altehoefer C, Ghanem N, et al. (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28:64–71PubMedCrossRef
60.
go back to reference Ambrosini V, Tomasetti P, Castellucci P, et al. (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35:1431–1438PubMedCrossRef Ambrosini V, Tomasetti P, Castellucci P, et al. (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35:1431–1438PubMedCrossRef
61.
go back to reference Treglia G, Castaldi P, Villani MF, et al. (2012) Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-011-2031-6 Treglia G, Castaldi P, Villani MF, et al. (2012) Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. doi:10.​1007/​s00259-011-2031-6
63.
go back to reference Rufini V, Treglia G, Castaldi P, et al. (2011) Comparison of 123I-MIBG SPECT/CT and 18F-DOPA PET/CT in the evaluation of patients with known or suspected recurrent paraganglioma. Nucl Med Commun 32:575–582PubMedCrossRef Rufini V, Treglia G, Castaldi P, et al. (2011) Comparison of 123I-MIBG SPECT/CT and 18F-DOPA PET/CT in the evaluation of patients with known or suspected recurrent paraganglioma. Nucl Med Commun 32:575–582PubMedCrossRef
64.
go back to reference Eriksson B, Bergstrom M, Orlefors H, et al. (2000) Use of PET in neuroendocrine tumors. In vivo application and in vitro studies. Quart J Nucl Med 44:68–76 Eriksson B, Bergstrom M, Orlefors H, et al. (2000) Use of PET in neuroendocrine tumors. In vivo application and in vitro studies. Quart J Nucl Med 44:68–76
65.
go back to reference Pasquali C, Rubello D, Sperti C, et al. (1998) Neuroendocrine tumors imaging: can 18F-18 fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behaviour? World J Surg 22:588–592PubMedCrossRef Pasquali C, Rubello D, Sperti C, et al. (1998) Neuroendocrine tumors imaging: can 18F-18 fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behaviour? World J Surg 22:588–592PubMedCrossRef
66.
go back to reference Adams S, Baum RP, Hertel A, et al. (1998) Metabolic (PET) and receptor (SPET) imaging of well and less well differentiated tumors: comparison with expression of the Ki-67 antigen. Nucl Med Commun 19:641–647PubMedCrossRef Adams S, Baum RP, Hertel A, et al. (1998) Metabolic (PET) and receptor (SPET) imaging of well and less well differentiated tumors: comparison with expression of the Ki-67 antigen. Nucl Med Commun 19:641–647PubMedCrossRef
67.
go back to reference Baum RP, Prasad V, Hommann M, Hörsch D (2008) Receptor PET/CT imaging of neuroendocrine tumors. Recent Results Cancer Res 170:225–242PubMedCrossRef Baum RP, Prasad V, Hommann M, Hörsch D (2008) Receptor PET/CT imaging of neuroendocrine tumors. Recent Results Cancer Res 170:225–242PubMedCrossRef
68.
go back to reference Garin E, Le Jeune F, Devillers A, et al. (2009) Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med 50:858–864PubMedCrossRef Garin E, Le Jeune F, Devillers A, et al. (2009) Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med 50:858–864PubMedCrossRef
69.
go back to reference Wild D, Behe M, Wicki A, et al. (2006) [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med 47:2025–2033PubMed Wild D, Behe M, Wicki A, et al. (2006) [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med 47:2025–2033PubMed
70.
go back to reference Wild D, Macke H, Christ E, Gloor B, Reubi JC (2008) Glucagon-like peptide-1 receptor scans to localize occult insulinomas. N Engl J Med 359:766–768PubMedCrossRef Wild D, Macke H, Christ E, Gloor B, Reubi JC (2008) Glucagon-like peptide-1 receptor scans to localize occult insulinomas. N Engl J Med 359:766–768PubMedCrossRef
71.
go back to reference Christ E, Wild D, Forrer F, et al. (2009) Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab 94:4398–4405PubMedCrossRef Christ E, Wild D, Forrer F, et al. (2009) Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab 94:4398–4405PubMedCrossRef
72.
go back to reference Wild D, Christ E, Caplin ME, et al. (2011) Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J Nucl Med 52:1073–1078PubMedCrossRef Wild D, Christ E, Caplin ME, et al. (2011) Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J Nucl Med 52:1073–1078PubMedCrossRef
Metadata
Title
Role of PET/CT in the functional imaging of endocrine pancreatic tumors
Authors
Vittoria Rufini
Richard P. Baum
Paola Castaldi
Giorgio Treglia
Anna Maria De Gaetano
Cecilia Carreras
Daniel Kaemmerer
Merten Hommann
Dieter Hörsch
Lorenzo Bonomo
Alessandro Giordano
Publication date
01-12-2012
Publisher
Springer-Verlag
Published in
Abdominal Radiology / Issue 6/2012
Print ISSN: 2366-004X
Electronic ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-012-9871-9

Other articles of this Issue 6/2012

Abdominal Radiology 6/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine