Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 7/2022

Open Access 26-01-2022 | Vancomycin | Original Article

Bacteria-targeted fluorescence imaging of extracted osteosynthesis devices for rapid visualization of fracture-related infections

Authors: Marina López-Álvarez, Marjolein Heuker, Klaas A. Sjollema, Gooitzen M. van Dam, Jan Maarten van Dijl, Frank F. A. IJpma, Marleen van Oosten

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 7/2022

Login to get access

Abstract

Purpose

Fracture-related infection (FRI) is a serious complication in orthopedic trauma surgery worldwide. Especially, the distinction of infection from sterile inflammation and the detection of low-grade infection are highly challenging. The objective of the present study was to obtain proof-of-principle for the use of bacteria-targeted fluorescence imaging to detect FRI on extracted osteosynthesis devices as a step-up towards real-time image-guided trauma surgery.

Methods

Extracted osteosynthesis devices from 13 patients, who needed revision surgery after fracture treatment, were incubated with a near-infrared fluorescent tracer composed of the antibiotic vancomycin and the fluorophore IRDye800CW (i.e., vanco-800CW). Subsequently, the devices were imaged, and vanco-800CW fluorescence signals were correlated to the results of microbiological culturing and to bacterial growth upon replica plating of the imaged devices on blood agar.

Results

Importantly, compared to culturing, the bacteria-targeted fluorescence imaging of extracted osteosynthesis devices with vanco-800CW allows for a prompt diagnosis of FRI, reducing the time-to-result from days to less than 30 min. Moreover, bacteria-targeted imaging can provide surgeons with real-time visual information on the presence and extent of infection.

Conclusion

Here, we present the first clinical application of fluorescence imaging for the detection of FRI. We conclude that imaging with vanco-800CW can provide early, accurate, and real-time visual diagnostic information on FRI in the clinical setting, even in the case of low-grade infections.

Graphical abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Engelsman AF, Saldarriaga-Fernandez IC, Nejadnik MR, van Dam GM, Francis KP, Ploeg RJ, et al. The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection. Biofouling. 2010;26(7):761–7.CrossRef Engelsman AF, Saldarriaga-Fernandez IC, Nejadnik MR, van Dam GM, Francis KP, Ploeg RJ, et al. The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection. Biofouling. 2010;26(7):761–7.CrossRef
2.
go back to reference Morgenstern M, Kühl R, Eckardt H, Acklin Y, Stanic B, Garcia M, et al. Diagnostic challenges and future perspectives in fracture-related infection. Injury. 2018;49(Suppl 1):S83–90.CrossRef Morgenstern M, Kühl R, Eckardt H, Acklin Y, Stanic B, Garcia M, et al. Diagnostic challenges and future perspectives in fracture-related infection. Injury. 2018;49(Suppl 1):S83–90.CrossRef
3.
go back to reference Govaert GAM, Kuehl R, Atkins BL, Trampuz A, Morgenstern M, Obremskey WT, et al. Diagnosing fracture-related infection: current concepts and recommendations. J Orthop Trauma. 2020;34(1):8–17.CrossRef Govaert GAM, Kuehl R, Atkins BL, Trampuz A, Morgenstern M, Obremskey WT, et al. Diagnosing fracture-related infection: current concepts and recommendations. J Orthop Trauma. 2020;34(1):8–17.CrossRef
4.
go back to reference Metsemakers WJ, Morgenstern M, McNally MA, Moriarty TF, McFadyen I, Scarborough M, et al. Fracture-related infection: a consensus on definition from an international expert group. Injury. 2018;49(3):505–10.CrossRef Metsemakers WJ, Morgenstern M, McNally MA, Moriarty TF, McFadyen I, Scarborough M, et al. Fracture-related infection: a consensus on definition from an international expert group. Injury. 2018;49(3):505–10.CrossRef
5.
go back to reference Ordonez AA, Sellmyer MA, Gowrishankar G, Ruiz-Bedoya CA, Tucker EW, Palestro CJ et al. Molecular imaging of bacterial infections: overcoming the barriers to clinical translation. Sci Transl Med. 2019;11(508):eaax8251. Ordonez AA, Sellmyer MA, Gowrishankar G, Ruiz-Bedoya CA, Tucker EW, Palestro CJ et al. Molecular imaging of bacterial infections: overcoming the barriers to clinical translation. Sci Transl Med. 2019;11(508):eaax8251.
6.
go back to reference van Oosten M, Hahn M, Crane LMA, Pleijhuis RG, Francis KP, van Dijl JM, et al. Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiol. 2015;39(6):892–916.CrossRef van Oosten M, Hahn M, Crane LMA, Pleijhuis RG, Francis KP, van Dijl JM, et al. Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiol. 2015;39(6):892–916.CrossRef
7.
go back to reference Heuker M, Gomes A, van Dijl JM, van Dam GM, Friedrich AW, Sinha B, et al. Preclinical studies and prospective clinical applications for bacteria-targeted imaging: the future is bright. Clin Transl Imaging. 2016;4:253–64.CrossRef Heuker M, Gomes A, van Dijl JM, van Dam GM, Friedrich AW, Sinha B, et al. Preclinical studies and prospective clinical applications for bacteria-targeted imaging: the future is bright. Clin Transl Imaging. 2016;4:253–64.CrossRef
8.
go back to reference Reeßing F, Bispo M, López-Álvarez M, van Oosten M, Feringa BL, van Dijl JM, et al. A facile and reproducible synthesis of near-infrared fluorescent conjugates with small targeting molecules for microbial infection imaging. ACS Omega. 2020;5(35):22071–80.CrossRef Reeßing F, Bispo M, López-Álvarez M, van Oosten M, Feringa BL, van Dijl JM, et al. A facile and reproducible synthesis of near-infrared fluorescent conjugates with small targeting molecules for microbial infection imaging. ACS Omega. 2020;5(35):22071–80.CrossRef
9.
go back to reference van Oosten M, Schäfer T, Gazendam JAC, Ohlsen K, Tsompanidou E, De Goffau MC, et al. Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun. 2013;4:2584.CrossRef van Oosten M, Schäfer T, Gazendam JAC, Ohlsen K, Tsompanidou E, De Goffau MC, et al. Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun. 2013;4:2584.CrossRef
10.
go back to reference Schoenmakers JWA, Heuker M, López-Álvarez M, Nagengast WB, van Dam GM, van Dijl JM, et al. Image-guided in situ detection of bacterial biofilms in a human prosthetic knee infection model: a feasibility study for clinical diagnosis of prosthetic joint infections. Eur. J. Nucl. Med. Mol. Imaging. 2020;8. Schoenmakers JWA, Heuker M, López-Álvarez M, Nagengast WB, van Dam GM, van Dijl JM, et al. Image-guided in situ detection of bacterial biofilms in a human prosthetic knee infection model: a feasibility study for clinical diagnosis of prosthetic joint infections. Eur. J. Nucl. Med. Mol. Imaging. 2020;8.
11.
go back to reference Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37(Suppl 2):S59-66.CrossRef Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37(Suppl 2):S59-66.CrossRef
12.
go back to reference Park HY, Zoller SD, Hegde V, Sheppard W, Burke Z, Blumstein G, et al. Comparison of two fluorescent probes in preclinical non-invasive imaging and image-guided debridement surgery of staphylococcal biofilm implant infections. Sci Rep. 2021;11:1622.CrossRef Park HY, Zoller SD, Hegde V, Sheppard W, Burke Z, Blumstein G, et al. Comparison of two fluorescent probes in preclinical non-invasive imaging and image-guided debridement surgery of staphylococcal biofilm implant infections. Sci Rep. 2021;11:1622.CrossRef
13.
go back to reference Voskuil FJ, Steinkamp PJ, Zhao T, van der Vegt B, Koller M, Doff JJ, et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat Commun. 2020;11(1):3257.CrossRef Voskuil FJ, Steinkamp PJ, Zhao T, van der Vegt B, Koller M, Doff JJ, et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat Commun. 2020;11(1):3257.CrossRef
14.
go back to reference Joshi BP, Wang TD. Targeted optical imaging agents in cancer: focus on clinical applications. Contrast Media Mol Imaging. 2018;2018(27):2015237.PubMedPubMedCentral Joshi BP, Wang TD. Targeted optical imaging agents in cancer: focus on clinical applications. Contrast Media Mol Imaging. 2018;2018(27):2015237.PubMedPubMedCentral
15.
go back to reference Mills B, Bradley M, Dhaliwal K. Optical imaging of bacterial infections. Clin Transl Imaging. 2016;4:163–74.CrossRef Mills B, Bradley M, Dhaliwal K. Optical imaging of bacterial infections. Clin Transl Imaging. 2016;4:163–74.CrossRef
16.
go back to reference Steinkamp PJ, Pranger BK, Li M, Linssen M, Voskuil FJ, Been L, et al. Fluorescence-guided visualization of soft tissue sarcomas by targeting vascular endothelial growth factor-A: a phase 1 single-center clinical trial. J Nucl Med. 2020;jnumed.120.245696. Steinkamp PJ, Pranger BK, Li M, Linssen M, Voskuil FJ, Been L, et al. Fluorescence-guided visualization of soft tissue sarcomas by targeting vascular endothelial growth factor-A: a phase 1 single-center clinical trial. J Nucl Med. 2020;jnumed.120.245696.
17.
go back to reference van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17(10):1315–9.CrossRef van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17(10):1315–9.CrossRef
18.
go back to reference Rubinstein E, Keynan Y. Vancomycin revisited – 60 years later. Front Public Health. 2014;31(2):217. Rubinstein E, Keynan Y. Vancomycin revisited – 60 years later. Front Public Health. 2014;31(2):217.
19.
go back to reference de Jongh SJ, Tjalma JJJ, Koller M, Linssen MD, Vonk J, Dobosz M, et al. Back-table fluorescence-guided imaging for circumferential resection margin evaluation using Bevacizumab-800CW in patients with locally advanced rectal cancer. J Nucl Med. 2020;61(5):655–61.CrossRef de Jongh SJ, Tjalma JJJ, Koller M, Linssen MD, Vonk J, Dobosz M, et al. Back-table fluorescence-guided imaging for circumferential resection margin evaluation using Bevacizumab-800CW in patients with locally advanced rectal cancer. J Nucl Med. 2020;61(5):655–61.CrossRef
20.
go back to reference Voskuil FJ, de Jongh SJ, Hooghiemstra WTR, Linssen MD, Steinkamp PJ, de Visscher SAHJ, et al. Fluorescence-guided imaging for resection margin evaluation in head and neck cancer patients using cetuximab-800CW: a quantitative dose-escalation study. Theranostics. 2020;10(9):3994–4005.CrossRef Voskuil FJ, de Jongh SJ, Hooghiemstra WTR, Linssen MD, Steinkamp PJ, de Visscher SAHJ, et al. Fluorescence-guided imaging for resection margin evaluation in head and neck cancer patients using cetuximab-800CW: a quantitative dose-escalation study. Theranostics. 2020;10(9):3994–4005.CrossRef
21.
go back to reference Maleb A, Frikh M, Lahlou YB, Chagar B, Lemnouer A, Elouennass M. Bacteriological aspects of chronic osteoarticular infections in adults: the influence of the osteosynthesis material. BMC Res Notes. 2017;10(1):635.CrossRef Maleb A, Frikh M, Lahlou YB, Chagar B, Lemnouer A, Elouennass M. Bacteriological aspects of chronic osteoarticular infections in adults: the influence of the osteosynthesis material. BMC Res Notes. 2017;10(1):635.CrossRef
22.
go back to reference Pinkston KL, Singh KV, Gao P, Wilganowski N, Robinson H, Ghosh S, Azhdarinia A, Sevick-Muraca EM, Murray BE, Harvey BR. Targeting pili in enterococcal pathogenesis. Infect Immun. 2014;82(4):1540–7.CrossRef Pinkston KL, Singh KV, Gao P, Wilganowski N, Robinson H, Ghosh S, Azhdarinia A, Sevick-Muraca EM, Murray BE, Harvey BR. Targeting pili in enterococcal pathogenesis. Infect Immun. 2014;82(4):1540–7.CrossRef
23.
go back to reference Zoller SD, Park HY, Olafsen T, Zamilpa C, Burke ZD, Blumstein G, Sheppard WL, Hamad CD, Hori KR, Tseng JC, Czupryna J, McMannus C, Lee JT, Bispo M, Romero Pastrana F, Raineri EJ, Miller JF, Miller LS, van Dijl JM, Francis KP, Bernthal NM. Multimodal imaging guides surgical management in a preclinical spinal implant infection model. JCI Insight. 2019;4(3):e124813. Zoller SD, Park HY, Olafsen T, Zamilpa C, Burke ZD, Blumstein G, Sheppard WL, Hamad CD, Hori KR, Tseng JC, Czupryna J, McMannus C, Lee JT, Bispo M, Romero Pastrana F, Raineri EJ, Miller JF, Miller LS, van Dijl JM, Francis KP, Bernthal NM. Multimodal imaging guides surgical management in a preclinical spinal implant infection model. JCI Insight. 2019;4(3):e124813.
Metadata
Title
Bacteria-targeted fluorescence imaging of extracted osteosynthesis devices for rapid visualization of fracture-related infections
Authors
Marina López-Álvarez
Marjolein Heuker
Klaas A. Sjollema
Gooitzen M. van Dam
Jan Maarten van Dijl
Frank F. A. IJpma
Marleen van Oosten
Publication date
26-01-2022
Publisher
Springer Berlin Heidelberg
Keyword
Vancomycin
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 7/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05695-y

Other articles of this Issue 7/2022

European Journal of Nuclear Medicine and Molecular Imaging 7/2022 Go to the issue